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Abstract: We propose a general set of constraints on the partition function of quarter

BPS dyons in any N = 4 supersymmetric string theory by drawing insight from known

examples, and study the consequences of this proposal. The main ingredients of our analysis

are duality symmetries, wall crossing formula and black hole entropy. We use our analysis

to constrain the dyon partition function for two hitherto unknown cases — the partition

function of dyons of torsion two (i.e. gcd(Q∧P ) = 2) in heterotic string theory on T 6 and

the partition function of dyons carrying untwisted sector electric charge in Z2 CHL model.

With the help of these constraints we propose a candidate for the partition function of

dyons of torsion two in heterotic string theory on T 6. This leads to a novel wall crossing

formula for decay of quarter BPS dyons into half BPS dyons with non-primitive charge

vectors. In an appropriate limit the proposed formula reproduces the known result for the

spectrum of torsion two dyons in gauge theory.
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1. Introduction and summary

The partition function of quarter BPS dyons is now known in a variety of N = 4 su-

persymmetric string theories [1 – 18]. Generalization of these results to a class of N = 2

supersymmetric string theories have also been proposed [19]. Our goal in this paper is to

draw insight from these known results to postulate the general structure of dyon partition

function for any class of quarter BPS dyons in any N = 4 supersymmetric string theory.

The results of our analysis can be summarized as follows.

1. Definition of the partition function. Let (Q,P ) denote the electric and magnetic

charges carried by a dyon, and Q2, P 2 and Q ·P be the T-duality invariant quadratic

forms constructed from these charges.1 In order to define the dyon partition function

we first need to identify a suitable infinite subset B of dyons in the theory with the

1Irrespective of what description we are using, we shall denote by S-duality transformation the symmetry

that acts on the complex scalar belonging to the gravity multiplet. In heterotic string compactification this

would correspond to the axion-dilaton modulus. On the other hand T-duality will denote the symmetry that

acts on the matter multiplet scalars. In the heterotic description these scalars arise from the components

of the metric, anti-symmetric tensor fields and gauge fields along the compact directions.
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property that if we have two pairs of charges (Q,P ) ∈ B and (Q′, P ′) ∈ B with

Q2 = Q′2, P 2 = P ′2 and Q · P = Q′ · P ′, then they must be related by a T-duality

transformation. Furthermore given a pair of charge vectors (Q,P ) ∈ B, all other pairs

of charge vectors related to it by T-duality should be elements of the set B. We shall

generate such a set B by beginning with a family A of charge vectors (Q,P ) labelled

by three integers such that Q2, P 2 and Q ·P are independent linear functions of these

three integers, and then define B to be the set of all (Q,P ) which are in the T-duality

orbit of the set A. We denote by d(Q,P ) the degeneracy, — or more precisely

an index measuring the number of bosonic supermultiplets minus the number of

fermionic supermultiplets — of quarter BPS dyons of charge (Q,P ). Since d(Q,P )

should be invariant under a T-duality transformation, for (Q,P ) ∈ B it should depend

on (Q,P ) only via the T-duality invariant combinations Q2, P 2 and Q · P :

d(Q,P ) = f(Q2, P 2, Q · P ) . (1.1)

Note that for (1.1) to hold it is necessary to choose B in the way we have described.

In particular if B had contained two elements with same Q2, P 2 and Q · P but not

related by a T-duality transformation, then d(Q,P ) can be different for these two

elements and (1.1) will not hold. Even when B is chosen according to the prescription

given above, eq. (1.1) cannot be strictly correct since d(Q,P ) could depend on the

asymptotic moduli besides the charges and one can construct more general T-duality

invariants using these moduli and the charges. Indeed, even though the index is not

expected to change under a continuous change in the moduli, it could jump across the

walls of marginal stability giving d(Q,P ) a dependence on the moduli. The reason

that we can still write eq. (1.1) is that it is possible to label the different domains

bounded by the walls of marginal stability by a set of discrete parameters ~c such that

T-duality transformation does not change the parameters ~c [13, 18, 20]. Physically,

if a domain is bounded by n walls of marginal stability, with the ith wall associated

with the decay (Q,P ) → (αiQ+βiP, γiQ+δiP )+((1−αi)Q−βiP,−γiQ+(1−δi)P ),

then ~c is the collection of the numbers {(αi, βi, γi, δi); 1 ≤ i ≤ n}. Due to T-duality

invariance of ~c, d(Q,P ) inside a given domain labelled by ~c will be invariant under

a T-duality transformation on the charges only and will have the form (1.1). For

different ~c the function f will be different, i.e. f has a hidden ~c dependence. We now

define the dyon partition function associated with the set B to be2

1

Φ̌(ρ̌, σ̌, v̌)
≡

∑

Q2,P 2,Q·P
(−1)Q·P+1 f(Q2, P 2, Q · P )eiπ(σ̌Q2+ρ̌P 2+2v̌Q·P ) , (1.2)

where the sum runs over all the distinct triplets (Q2, P 2, Q · P ) which are present in

the set B. This relation can be inverted as

f(Q2, P 2, Q · P ) ∝ (−1)Q·P+1

∫

C
dρ̌dσ̌dv̌ e−iπ(σ̌Q2+ρ̌P 2+2v̌Q·P ) 1

Φ̌(ρ̌, σ̌, v̌)
, (1.3)

2For N = 4 supersymmetric ZN orbifolds reviewed in [18] the function Φ̌ is related to the function eΦ
of [18] by the relation Φ̌(ρ̌, σ̌, v̌) = eΦ(eρ, eσ, ev) with (eρ, eσ, ev) = (σ̌/N, Nρ̌, v̌).
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where C denotes an appropriate three dimensional subspace of the complex (ρ̌, σ̌, v̌)

space. Along the ‘contour’ C the imaginary parts of ρ̌, σ̌ and v̌ are fixed at values

where the sum in (1.2) converges, and the real parts of ρ̌, σ̌ and v̌ vary over an

appropriate unit cell determined by the quantization laws of Q2, P 2 and Q ·P inside

the set B.

In all known cases the function f in different domains ~c is given by (1.3) with identical

integrand, but the integration contour C depends on the choice of ~c. Put another

way, the same function 1/Φ̌(ρ̌, σ̌, v̌) admits different Fourier expansion in different

regions in the complex (ρ̌, σ̌, v̌) space, since a Fourier expansion that is convergent in

one region may not be convergent in another region. The coefficients of expansion in

these different regions in the complex (ρ̌, σ̌, v̌) plane may then be regarded as the index

f(Q2, P 2, Q·P ) in different domains in the asymptotic moduli space labelled by ~c. We

shall assume that this result holds for all sets of dyons in all N = 4 string theories.

2. Consequences of S-duality symmetry. We now consider the effect of an S-duality

transformation on the set B. A generic S-duality transformation will take an ele-

ment of B to outside B, — we denote by H the subgroup of the S-duality group that

leaves B invariant. This is the subgroup relevant for constraining the dyon partition

function associated with the set B. Since a generic element of H takes us from one

domain bounded by walls of marginal stability to another such domain, it relates the

function f for one choice of ~c to the function f for another choice of ~c. However since

we have assumed that the dyon partition function 1/Φ̌ is independent of the domain

label ~c, we can use invariance under H to constrain the form of Φ̌. In particular one

finds that an S-duality symmetry of the form (Q,P ) → (aQ + bP, cQ + dP ) with(
a b

c d

)
∈ H gives the following constraint on Φ̌:

Φ̌(ρ̌, σ̌, v̌) = Φ̌(d2ρ̌+ b2σ̌ + 2bdv̌, c2ρ̌+ a2σ̌ + 2acv̌, cdρ̌ + abσ̌ + (ad+ bc)v̌) . (1.4)

Defining

Ω̌ =

(
ρ̌ v̌

v̌ σ̌

)
, (1.5)

we can express (1.4) as

Φ̌((AΩ̌ +B)(CΩ̌ +D)−1) = (det(CΩ̌ +D))k Φ̌(Ω) , (1.6)

where

(
A B

C D

)
=




d b 0 0

c a 0 0

0 0 a −c
0 0 −b d


 , (1.7)

and k is as yet undermined since det(CΩ +D) = 1.

Besides this symmetry, quantization ofQ2, P 2 andQ·P within the set B also gives rise

to some translational symmetries of Φ̌ of the form Φ̌(ρ̌, σ̌, v̌) = Φ̌(ρ̌+a1, σ̌+a2, v̌+a3)

– 3 –
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with a1, a2, a3 taking values in an appropriate set. These can also be expressed

as (1.6) with

(
A B

C D

)
=




1 0 a1 a3

0 1 a3 a2

0 0 1 0

0 0 0 1


 . (1.8)

3. Wall crossing formula. Given that the indices in different domains in the moduli

space are given by different choices of the 3-dimensional integration contour in the

(ρ̌, σ̌, v̌) space, the jump in the index as we cross a wall of marginal stability must be

given by the residue of the integrand at the pole(s) encountered while deforming one

contour to another. The walls across which the index jumps are the ones associated

with decays into a pair of half-BPS states.3 We can label the decay products as [13]

(Q,P ) → (a0d0Q−a0b0P, c0d0Q−c0b0P )+(−b0c0Q+a0b0P,−c0d0Q+a0d0P ) , (1.9)

where a0, b0, c0 and d0 are normalized so that a0d0 − b0c0 = 1. In a generic situation

a0, b0, c0 and d0 are not necessarily integers but are constrained by the fact that the

final charges satisfy the charge quantization laws. In all known examples there is a

specific correlation between a wall corresponding to a given decay and the location of

the pole of the integrand that the contour crosses as we cross the wall in the moduli

space. The location of the pole associated with the decay (1.9) is given by:

ρ̌c0d0 + σ̌a0b0 + v̌(a0d0 + b0c0) = 0 . (1.10)

We shall assume that this formula continues to hold in all cases. This then relates

the jump in the index across a given wall of marginal stability to the residue of the

partition function at a specific pole. An explicit choice of moduli dependent contour

that satisfies this requirement can be found by generalizing the result of Cheng and

Verlinde [17] to generic quarter BPS dyons in generic N = 4 supersymmetric string

3For a certain class of dyons kinematics allows decay into a pair of quarter BPS states or a half BPS

and a quarter BPS states on a codimension 1 subspace of the moduli space. These correspond to decays

of the form (Q, P ) → (αQ + βP, γQ + δP ) + ((1 − α)Q − βP,−γQ + (1 − δ)P ) with some of the α, β, γ, δ

fractional so that we can have 0 < (αδ−βγ) < 1 and 0 ≤ ((1−α)(1− δ)−βγ < 1 [21, 22]. However a naive

counting of the number of fermion zero modes on a half BPS - quarter BPS and quarter BPS - quarter

BPS combination suggests that there are additional fermion zero modes besides the ones associated with

the broken supersymmetry generators. This makes the index associated with such a configuration vanish.

Although a rigorous analysis of this system is lacking at present, we shall proceed with the assumption

that the result is valid so that such decays do not change the index. Otherwise the dyon partition function

will have additional poles associated with the jump in the index across these additional walls of marginal

stability. We wish to thank F. Denef for a discussion on this point.
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theories:

ℑ(ρ̌) = Λ


 |τ |2

τ2
+

Q2
R√

Q2
RP

2
R − (QR · PR)2


 ,

ℑ(σ̌) = Λ


 1

τ2
+

P 2
R√

Q2
RP

2
R − (QR · PR)2


 ,

ℑ(v̌) = −Λ


τ1
τ2

+
QR · PR√

Q2
RP

2
R − (QR · PR)2


 , (1.11)

where Λ is a large positive number, ℑ(z) denotes the imaginary part of z,

Q2
R = QT (M + L)Q, P 2

R = P T (M + L)P, QR · PR = QT (M + L)P , (1.12)

τ ≡ τ1+iτ2 denotes the asymptotic value of the axion-dilaton moduli which belong to

the gravity multiplet and M is the asymptotic value of the symmetric matrix valued

moduli field of the matter multiplet satisfying MLMT = L. The choice (1.11) of

course is not unique since we can deform the contour without changing the result for

the index as long as we do not cross a pole of the partition function.

Independent of the above analysis, the change in the index across a wall of marginal

stability can be computed using the wall crossing formula [13, 23 – 28]. This tells

us that as we cross a wall of marginal stability associated with the decay (Q,P ) →
(Q1, P1) + (Q2, P2), the index jumps by an amount4

(−1)Q1·P2−Q2·P1+1 (Q1 · P2 −Q2 · P1) dh(Q1, P1)dh(Q2, P2) (1.13)

up to a sign, where dh(Q,P ) denotes the index of half-BPS states carrying charge

(Q,P ). For the decay described in (1.9) the relevant half-BPS indices are of the form

dh(a0M0, c0M0) and dh(b0N0, d0N0) where M0 ≡ d0Q− b0P and N0 ≡ −c0Q+ a0P .

T-duality invariance implies that – modulo some subtleties discussed below eqs.(4.11)

– the dependence of dh(a0M0, c0M0) and dh(b0N0, d0N0) on M0 and N0 must come

via the combinations M2
0 and N2

0 respectively. We now define

φe(τ ; a0, c0) ≡
∑

M2

0

eπiτM2

0 dh(a0M0, c0M0),

φm(τ ; b0, d0) ≡
∑

N2

0

eπiτN2

0 dh(b0N0, d0N0) , (1.14)

where the sums are over the sets of (M2
0 , N

2
0 ) values which arise in the possible de-

cays of the dyons in the set B via (1.9). Then (1.13) agrees with the residue of the

4Eq. (1.13) holds only if the dyons (Q1, P1) and (Q2, P2) are primitive. As will be discussed later, this

formula gets modified for non-primitive decay.

– 5 –



J
H
E
P
0
5
(
2
0
0
8
)
1
0
1

partition function at the pole (1.10) if we assume that Φ̌ has a double zero at (1.10)

where it behaves as

Φ̌(ρ̌, σ̌, v̌) ∝ v̌′2 φe(σ̌
′; a0, c0)φm(ρ̌′; b0, d0) , v̌′ ≡ ρ̌c0d0 + σ̌a0b0 + v̌(a0d0 + b0c0),

σ̌′ ≡ c20ρ̌+ a2
0σ̌ + 2a0c0v̌, ρ̌′ ≡ d2

0ρ̌+ b20σ̌ + 2b0d0v̌ . (1.15)

Since for any given system the allowed values of (a0, b0, c0, d0) can be found from

charge quantization laws, (1.15) gives us information about the locations of the ze-

roes on Φ̌ and its behaviour at these zeroes in terms of the spectrum of half-BPS

states in the theory.

4. Additional modular symmetries. Often the partition functions associated with

dh(Q,P ) have modular properties, e.g. the function φm(τ ; a0, c0) could transform as

a modular form under τ → (ατ + β)/(γτ + δ) and φe(τ ; b0, d0) could transform as

a modular form under τ → (pτ + q)/(rτ + s) with

(
α β

γ δ

)
and

(
p q

r s

)
belonging to

certain subgroups of SL(2,Z). Some of these may be accidental symmetries, but some

could be consequences of exact symmetries of the full partition function Φ̌(ρ̌, σ̌, v̌)−1.

Using (1.15) one finds that those which can be lifted to exact symmetries of Φ̌ can be

represented as symplectic transformations of the form (1.6) with

(
A B

C D

)
given by




d0 b0 0 0

c0 a0 0 0

0 0 a0 −c0
0 0 −b0 d0




−1


α 0 β 0

0 1 0 0

γ 0 δ 0

0 0 0 1







d0 b0 0 0

c0 a0 0 0

0 0 a0 −c0
0 0 −b0 d0


 (1.16)

and 


d0 b0 0 0

c0 a0 0 0

0 0 a0 −c0
0 0 −b0 d0




−1


1 0 0 0

0 p 0 q

0 0 1 0

0 r 0 s







d0 b0 0 0

c0 a0 0 0

0 0 a0 −c0
0 0 −b0 d0


 (1.17)

respectively. These represent additional symmetries of Φ̌ besides the ones associated

with S-duality invariance and charge quantization laws. Furthermore the constant k

appearing in (1.6) is given by the weight of φe and φm minus 2.

It is these additional symmetries which make the symmetry group of Φ̌ a non-trivial

subgroup of Sp(2,Z). The S-duality transformations (1.7) and the translation

symmetries (1.8) are both associated with Sp(2,Z) matrices

(
A B

C D

)
with C = 0.

In contrast the trnsformations (1.16), (1.17) typically have C 6= 0.

Since we do not a priori know which part of the modular symmetries of φe and φm

survive as symmetries of Φ̌, this does not give a foolproof method for identifying

symmetries of Φ̌. However often by combining information from the behaviour of Φ̌

around different zeroes one can make a clever guess.

– 6 –
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5. Black hole entropy. Additional constraints may be found be requiring that in the

limit of large charges the index reproduces correctly the black hole entropy.5 In par-

ticular, by requiring that we reproduce the black hole entropy π
√
Q2P 2 − (Q · P )2

that arises in the supergravity approximation one finds that Φ̌ is required to have a

zero at [1, 2, 6, 9, 18]

ρ̌σ̌ − v̌2 + v̌ = 0 . (1.18)

In order to find the behaviour of Φ̌ near this zero one needs to calculate the first

non-leading correction to the black hole entropy and compare this with the first

non-leading correction to the formula for the index. In general the former requires

the knowledge of the complete set of four derivative terms in the effective action,

but in all known examples one can reproduce the answer for the index just by taking

into account the effect of the Gauss-Bonnet term in the action. If we assume that

this continues to hold in general then by matching the first non-leading corrections

on both sides one can relate the behaviour of Φ̌ near (1.18) to the coefficient of the

Gauss-Bonnet term. The result is

Φ̌(ρ̌, σ̌, v̌) ∝ (2v − ρ− σ)k {v2 g(ρ) g(σ) + O(v4)} , (1.19)

where

ρ =
ρ̌σ̌ − v̌2

σ̌
, σ =

ρ̌σ̌ − (v̌ − 1)2

σ̌
, v =

ρ̌σ̌ − v̌2 + v̌

σ̌
, (1.20)

and g(τ) is a modular form of weight k + 2 of the S-duality group, related to the

Gauss-Bonnet term
∫
d4x

√
− det g φ(a, S)

{
RµνρσR

µνρσ − 4RµνR
µν +R2

}
, (1.21)

via the relation

φ(a, S) = − 1

64π2
((k + 2) lnS + ln g(a+ iS) + ln g(−a+ iS)) + constant . (1.22)

Here τ = a+ iS is the axion-dilaton modulus.

In section 6 we apply the considerations described above to several examples. These

include known examples involving unit torsion dyons in heteroric string theory on T 6 and

CHL orbifolds and also some unknown cases like dyons of torsion 2 in heterotic string

theory on T 6 (i.e. dyons for which gcd(Q∧P )=2 [14]) and dyons carrying untwisted sector

charges in Z2 CHL orbifold [29, 30]. In the latter cases we determine the constraints

imposed by the S-duality invariance and wall crossing formulæ and also try to use the

known modular properties of half-BPS states to guess the symmetry group of the quarter

BPS dyon partition function.

5Here we are implicitly assuming that when the effect of interactions are taken into account, only index

worth of states remain as BPS states so that the black hole entropy can be compared to the logarithm of

the index.
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In section 7 we propose a formula for the dyon partitions function of torsion two dyons

in heterotic string theory on T 6. The formula for the partition function when Q and P are

both primitive but (Q± P ) are twice primitive vectors is

1

Φ̌(ρ̌, σ̌, v̌)
=

1

8

[
1

Φ10(ρ̌, σ̌, v̌)
+

1

Φ10(ρ̌+ 1
2 , σ̌ + 1

2 , v̌)
+

1

Φ10(ρ̌+ 1
4 , σ̌ + 1

4 , v̌ + 1
4 )

+
1

Φ10(ρ̌+ 3
4 , σ̌ + 3

4 , v̌ + 1
4)

+
1

Φ10(ρ̌+ 1
2 , σ̌ + 1

2 , v̌ + 1
2 )

+
1

Φ10(ρ̌, σ̌, v̌ + 1
2 )

+
1

Φ10(ρ̌+ 3
4 , σ̌ + 3

4 , v̌ + 3
4)

+
1

Φ10(ρ̌+ 1
4 , σ̌ + 1

4 , v̌ + 3
4)

]

+
2

Φ10(ρ̌+ σ̌ + 2v̌, ρ̌+ σ̌ − 2v̌, σ̌ − ρ̌)
(1.23)

where Φ10 is the weight 10 Igusa cusp form of Sp(2,Z) describing the inverse partition

function of torsion one dyons. The sum of the first eight terms on the right hand side

of (1.23) coincides with the partition function of unit torsion dyons subject to the con-

straints that Q2 + P 2 ± 2Q · P are multiples of 8; the last term is a new addition. We

show that (1.23) satisfies all the required consistency conditions. First of all it has the

required S-duality invariance. It also satisfies the wall crossing formulæ at all the walls

of marginal stability at which the original dyon decays into a pair of primitive dyons. It

satisfies the constraint (1.19) coming from the requirement that the statistical entropy and

the black hole entropy agrees up to the first non-leading order in inverse powers of charges.

Furthermore by taking an appropriate limit of this formula we can reproduce the known

results for torsion two dyons in gauge theories [31 – 35].

In the case of torsion two dyons with Q, P both primitive, the vectors Q± P are not

primitive, but (Q± P )/2 are primitive vectors [20]. As a result for the decay into

(Q1, P1) = (Q− P, 0), (Q2, P2) = (P,P ) , (1.24)

the charge vector (Q1, P1) is not primitive. Computing the jump in the index from (1.23)

we find that in this case the change in the index across this wall of marginal stability is

given by

∆d(Q,P ) = (−1)Q1·P2−Q2·P1+1(Q1 · P2 −Q2 · P1)

{
dh(Q1, P1)+dh

(
1

2
Q1,

1

2
P1

)}
dh(Q2, P2).

(1.25)

This differs from the formula (1.13). A similar modification of the wall crossing formula

for decays into non-primitive states in N = 2 supersymmetric string theories has been

suggested in [28].

There are two more classes of dyons of torsion two, — one where Q is primitive

and P is twice a primitive vector and the other where P is primitive and Q is twice a

primitive vector. The partition functions for these dyons can be recovered from the one

given above by S-duality transformations (Q,P ) → (Q,P − Q) and (Q,P ) → (Q − P,P )

respectively [20]. This amount to making replacements (ρ̌, σ̌, v̌) → (ρ̌, σ̌ + ρ̌ + 2v̌, v̌ + ρ̌)

and (ρ̌, σ̌, v̌) → (ρ̌+ σ̌ + 2v̌, σ̌, v̌ + σ̌) respectively in eq. (1.23).
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Our analysis can also be used to predict the form of the partition function of dyons of

higher torsion. These results will be presented in a forthcoming publication [36].

Although we have presented most of our analysis as a way of extracting information

about the partition function of quarter BPS states from known spectrum of half-BPS states,

we could also use it in the reverse direction. In the final section 8 we provide some examples

in the context of ZN orbifold models where the knowledge of the quarter BPS partition

function can be used to compute the spectrum of a certain class of half-BPS states.

2. The dyon partition function

Let us consider a particular N = 4 supersymmetric string theory in four dimensions with

a total of r U(1) gauge fields including the six graviphotons. The electric and magnetic

charges in this theory are represented by r dimensional vectors Q and P , and there is a T-

duality invariant metric L of signature (6, r−6) that can be used to define the inner product

of the charges. Let us consider an (infinite) set B of dyon charge vectors (Q,P ) with the

property that if two different members of the set have the same values of Q2 ≡ QTLQ,

P 2 ≡ P TLP and Q · P ≡ QTLP then there must exist a T-duality transformation that

relates the two members. In other words if there are T-duality invariants other than Q2,

P 2 and Q ·P then for all members of the set B with a given set of values of (Q2, P 2, Q ·P )

these other T-duality invariants must have the same values. We shall generate such a set B
by beginning with a family A of charge vectors (Q,P ) labelled by three integers such that

the triplet (Q2, P 2, Q ·P ) are independent linear functions of these three integers, and then

define B to be the set of all (Q,P ) which are in the T-duality orbit of the set A. Such a

set B automatically satisfies the restriction mentioned above since given two elements of B
with the same values of (Q2, P 2, Q ·P ), each will be related by a T-duality transformation

to the unique element of A with these values of (Q2, P 2, Q · P ). An example of such a set

A can be found in eqs.(6.3), (6.4).

Our object of interest is the index d(Q,P ), measuring the number of bosonic super-

multiplets minus the number of fermionic supermultiplets of quarter BPS dyons carrying

charges (Q,P ) ∈ B. Typically the index, besides depending on (Q,P ), also depends of

the domain in which the asymptotic moduli lie. These domains are bounded by walls of

marginal stability associated with decays of the form (Q,P ) → (αQ + βP, γQ + δP ) +

((1 − α)Q− βP,−γQ+ (1 − δ)P ) for appropriate values of (α, β, γ, δ) associated with the

quantization conditions [22, 21, 37]. For fixed values of the other moduli these walls de-

scribe circles or straight lines in the axion-dilaton moduli space labelled by the complex

parameter τ [13, 22]. We denote by ~c the collection of (αi, βi, γi, δi) bordering a particular

domain in the moduli space; inside any such domain the index remains unchanged. It

has been shown in [13] that the parameters ~c labelling a domain remain invariant under a

simultaneous T-duality transformation on the charges and the moduli. Since d(Q,P ) must

be invariant under simultaneous T-duality transformation on the charges and the moduli,

we can conclude that for a given ~c the index d(Q,P ) for (Q,P ) ∈ B will be a function only

of the T-duality invariants (Q2, P 2, Q · P ). We shall express this as f(Q2, P 2, Q · P,~c).
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Let us now introduce the partition function

1

Φ̌(ρ̌, σ̌, v̌)
≡

∑

Q2,P 2,Q·P
(−1)Q·P+1 f(Q2, P 2, Q · P ;~c0)e

iπ(σ̌Q2+ρ̌P 2+2v̌Q·P ) . (2.1)

where ~c0 denotes some specific domain in the moduli space bounded by a set of walls of

marginal stability. The sum runs over allowed values of Q2, P 2 and Q · P for the dyons

belonging to the set B. The factor of (−1)Q·P+1 has been included for convenience. Φ̌ so

defined is expected to be a periodic function of ρ̌, σ̌ and v̌, with the periods depending

on the quantization condition on P 2, Q2 and Q · P . Let the periods be T1, T2 and T3

respectively – these represent inverses of the quanta of P 2/2, Q2/2 and Q ·P belonging to

the set B. The sum given in (2.1) is typically not convergent for real values of ρ̌, σ̌ and

v̌. However often it may be made convergent by treating ρ̌, σ̌ and v̌ as complex variables

and working in appropriate domain in the complex plane. We shall assume that this can

be done. We may now invert (2.1) as

f(Q2, P 2, Q · P ;~c0) =
(−1)Q·P+1

T1T2T3

∫ iM1+T1/2

iM1−T1/2
dρ̌

∫ iM2+T2/2

iM2−T2/2
dσ̌

∫ iM3+T3/2

iM3−T3/2
dv̌

×e−iπ(σ̌Q2+ρ̌P 2+2v̌Q·P ) 1

Φ̌(ρ̌, σ̌, v̌)
, (2.2)

provided the imaginary parts M1, M2 and M3 of ρ̌, σ̌ and v̌ are fixed in a region where the

original sum (2.1) is convergent.

During the above discussion we have implicitly assumed that the quantization laws of

Q2, P 2 and Q·P are uncorrelated so that Φ̌(ρ̌, σ̌, v̌) is separately invariant under ρ̌→ ρ̌+T1,

σ̌ → σ̌+T2 and v̌ → v̌+T3. In general we can have more complicated periods which involve

simultaneous shifts of ρ̌, σ̌ and v̌. In this case the integration in (2.2) needs to be carried

out over an appropriate unit cell in the (ℜ(ρ̌),ℜ(σ̌),ℜ(v̌)) space and the factor of T1T2T3

in the denominator will be replaced by the volume of the unit cell.

3. Consequences of S-duality symmetry

Let us now assume that the theory has S-duality symmetries of the form

Q→ Q′′ = aQ+ bP, P → P ′′ = cQ+ dP , (3.1)

for appropriate choice of (a, b, c, d). Under this transformation

Q′′2 = a2Q2 + b2P 2 + 2abQ · P, P ′′2 = c2Q2 + d2P 2 + 2cdQ · P,
Q′′ · P ′′ = acQ2 + bdP 2 + (ad+ bc)Q · P . (3.2)

A generic S-duality transformation acting on an arbitrary element of B will give rise to

(Q′′, P ′′) outside the set B for which the index formula is given by the function f . We shall

restrict ourselves to a subset of S-duality transformations which takes an element of the

set B to another element of the set B. For such transformations, the S-duality invariance

of the theory tells us that

f(Q′′2, P ′′2, Q′′ · P ′′,~c ′′0) = f(Q2, P 2, Q · P,~c0) , (3.3)
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where ~c ′′0 denotes the collection {(α′′
i , β

′′
i , γ

′′
i , δ

′′
i )} of domain walls related to the set

{(αi, βi, γi, δi)} associated with ~c0 by the relation [13, 20]

(
α′′

i β
′′
i

γ′′i δ′′i

)
=

(
a b

c d

)(
αi βi

γi δi

)(
a b

c d

)−1

. (3.4)

Physically the domain corresponding to ~c ′′0 represents the image of the one corresponding

to ~c0 under simultaneous S-duality transformation on the charges and the moduli. Making

a change of variables

ρ̌ = d2ρ̌′′+b2σ̌′′+2bdv̌′′, σ̌ = c2ρ̌′′+a2σ̌′′+2acv̌′′, v̌ = cdρ̌′′+abσ̌′′+(ad+bc)v̌′′ , (3.5)

in (2.2) and using the fact that

(−1)Q·P = (−1)Q
′′·P ′′

, σ̌Q2+ρ̌P 2+2v̌Q·P = σ̌′′Q′′2+ρ̌′′P ′′2+2v̌′′Q′′ ·P ′′,

dρ̌ ∧ dσ̌ ∧ dv̌ = dρ̌′′ ∧ dσ̌′′ ∧ dv̌′′ , (3.6)

under an S-duality transformation, we can express (3.3) as

f(Q′′2, P ′′2, Q′′ · P ′′,~c ′′0)=
(−1)Q

′′·P ′′+1

T1T2T3

∫

C
dρ̌′′dσ̌′′dv̌′′ e−iπ(σ̌′′Q′′2+ρ̌′′P ′′2+2v̌′′Q′′·P ′′) 1

Φ̌(ρ̌, σ̌, v̌)
,

(3.7)

where C is the image of the original region of integration (2.2) in the complex (ρ̌′′, σ̌′′, v̌′′)

plane:

ℑ(ρ̌′′) = a2M1 + b2M2 − 2abM3, ℑ(σ̌′′) = c2M1 + d2M2 − 2cdM3,

ℑ(v̌′′) = −acM1 − bdM2 + (ad+ bc)M3 . (3.8)

We would like to get some constraint on the function Φ̌ by comparing (2.2) with (3.7).

For this we note that we can replace (Q,P ) by (Q′′, P ′′) and (ρ̌, σ̌, v̌) by (ρ̌′′, σ̌′′, v̌′′) every-

where in (2.2) since they are dummy variables. This gives

f(Q′′2, P ′′2, Q′′ · P ′′;~c0) =
(−1)Q

′′·P ′′+1

T1T2T3

∫ iM1+T1/2

iM1−T1/2
dρ̌′′

∫ iM2+T2/2

iM2−T2/2
dσ̌′′

∫ iM3+T3/2

iM3−T3/2
dv̌′′

×e−iπ(σ̌′′Q′′2+ρ̌′′P ′′2+2v̌′′Q′′·P ′′) 1

Φ̌(ρ̌′′, σ̌′′, v̌′′)
. (3.9)

Since in general ~c0 and ~c ′′0 describe different domains, we cannot compare (3.7) and (3.9)

to constrain the form of Φ̌ without any further input.6 However the dyon spectrum in a

variety of N = 4 supersymmetric string theories displays the feature that the spectrum

in two different domains ~c ′′0 and ~c0 are both given as integrals with the same integrand,

but for ~c ′′0 the integration over (ρ̌′′, σ̌′′, v̌′′) is carried out over a different subspace than the

one given in (3.9). In particular if ~c ′′0 is related to ~c0 by an S-duality transformation then

this subspace is given by the integration region C given in (3.8). We shall assume that this

6The only exceptions are those S-duality transformations which leave the domain ~c0 unchanged [13].
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feature continues to hold in the general situation. In that case the effect of replacing ~c0 by

~c ′′0 in eq. (3.9) is to replace the integration contour by C on the right hand side:

f(Q′′2, P ′′2, Q′′ · P ′′;~c′′0)=
(−1)Q

′′·P ′′+1

T1T2T3

∫

C
dρ̌′′dσ̌′′dv̌′′e−iπ(σ̌′′Q′′2+ρ̌′′P ′′2+2v̌′′Q′′·P ′′) 1

Φ̌(ρ̌′′, σ̌′′, v̌′′)
.

(3.10)

Comparing (3.10) and (3.7) we get

Φ̌(ρ̌, σ̌, v̌) = Φ̌(ρ̌′′, σ̌′′, v̌′′) . (3.11)

For future reference we shall rewrite the transformation laws (3.5) in a suggestive form.

We define

Ω̌ =

(
ρ̌ v̌

v̌ σ̌

)
. (3.12)

Then the transformations (3.5) may be written as

Ω̌ = (AΩ̌′′ +B)(CΩ̌′′ +D)−1 , (3.13)

where A, B, C and D are 2 × 2 matrices, given by

(
A B

C D

)
=




d b 0 0

c a 0 0

0 0 a −c
0 0 −b d


 . (3.14)

Eq. (3.11) now gives (after replacing the dummy variable Ω̌′′ by Ω̌ on both sides),

Φ̌((AΩ̌ +B)(CΩ̌ +D)−1) = det(CΩ̌ +D)kΦ̌(Ω̌) , (3.15)

for A, B, C, D given in (3.14). Here k is an arbitrary number. Since det(CΩ + D) = 1,

we cannot yet ascertain the value of k.

To this we can also append the translational symmetries of Φ̌:

Φ̌(ρ̌, σ̌, v̌) = Φ̌(ρ̌+ a1, σ̌ + a2, v̌ + a3) , (3.16)

where ai’s are integer multiples of the Ti’s. It is convenient, although not necessary, to work

with appropriately rescaled Q and/or P so that the Ti’s and hence the ai’s are integers.

This symmetry can also be rewritten as (3.15) with the choice

(
A B

C D

)
=




1 0 a1 a3

0 1 a3 a2

0 0 1 0

0 0 0 1


 . (3.17)

Again since det(CΩ̌ +D) = 1 the choice of k is arbitrary.

The alert reader would have noticed that although we have expressed the consequences

of S-duality invariance and charge quantization conditions as symmetries of the function
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Φ̌ under a symplectic transformation, the symplectic transformations arising this way are

trivial, — for all the transformations arising this way the matrix C vanishes and hence the

transformations act linearly on the variables ρ̌, σ̌ and v̌. In order to show that the function

Φ̌ has non-trivial modular properties we need to find symmetries of Φ̌ which have non-

vanishing C. This will also determine the weight of Φ̌ under the modular transformation.

To get a hint about any possible additional symmetries of Φ̌ we need to make use of the

wall crossing formula for the dyon spectrum of N = 4 supersymmetric string theories. This

will be the subject of discussion in section 4.

4. Constraints from wall crossing

As has already been discussed, the index associated with the quarter BPS dyon spectrum

in N = 4 supersymmetric string theories can undergo discontinuous jumps across walls of

marginal stability. A priori the formula for the dyon spectrum in different domains labelled

by the vector ~c could be completely different. However the study of dyon spectrum in a

variety of N = 4 supersymmetric string theories shows that in different domains the index

continues to be given by an expression similar to (2.2), the only difference being that the

choice of the 3 real dimensional subspace (contour) over which we carry out the integration

in the complex (ρ̌, σ̌, v̌) plane is different in different domains. As a result the difference

between the indices in two different domains is given by the sum of residues of the integrand

at the poles we encounter while deforming the contour associated with one domain to the

contour associated with another domain. As a special example of this we can consider the

decay (Q,P ) → (Q, 0) + (0, P ). In all known examples change in the index across this

wall of marginal stability is accounted for by the residue of a double pole of the integrand

at v̌ = 0, i.e. as we cross this particular wall of marginal stability in the moduli space,

the integration contour crosses the pole at v̌ = 0. Since the change in the index as we

cross a given wall can be found using the wall crossing formula [13, 23 – 28], this provides

information on the residue of the integrand at the v̌ = 0 pole.

There are many other possible decays of a quarter BPS state into a pair of half BPS

states. All such decays may be parametrized as [13]

(Q,P ) → (a0d0Q− a0b0P, c0d0Q− c0b0P ) + (−b0c0Q+ a0b0P,−c0d0Q+ a0d0P ) ,

a0d0 − b0c0 = 1 . (4.1)

a0, b0, c0, d0 are not necessarily all integers, but must be such that the charges carried

by the decay products belong to the charge lattice. One can try to use the wall crossing

formulæ associated with these decays to further constrain the form of Φ̌. For unit torsion

states in heterotic string theory on T 6, a0, b0, c0 and d0 are integers and the decay given

in (4.1) is related to the decay (Q,P ) → (Q, 0) + (0, P ) via an S-duality transformation(
a0 b0
c0 d0

)
. Thus the change in the index across the wall is controlled by the residue of

the partition function at a new pole that is related to the v̌ = 0 pole by the S-duality

transformation (3.5). This gives the location of the pole to be at

ρ̌c0d0 + σ̌a0b0 + v̌(a0d0 + b0c0) = 0 . (4.2)
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As long as Φ̌ is manifestly S-duality invariant, i.e. satisfies (3.14), (3.15), the residues at

these poles will automatically satisfy the wall crossing formula. Thus they do not provide

any new information. However in a generic situation new walls may appear, labelled by

fractional values of a0, b0, c0, d0. Also the S-duality group is smaller. As a result not all the

walls can be related to each other by S-duality transformation. It is tempting to speculate

that the jump across any wall of marginal stability associated with the decay (4.1) is

described by the residue of the partition function at the pole at (4.2). We shall proceed

with this assumption — this will be one of our key postulates.7

Before we proceed we shall show that this postulate is internally consistent, i.e. it is

possible to choose C at different points in the moduli space consistent with this postulate.

For this we generalize the contour prescription of [17], assuming that it holds for all N = 4

supersymmetric string theories. Let τ = τ1 + iτ2 be the axion-dilaton moduli, M be the

usual r × r symmetric matrix valued moduli satisfying MLMT = L, and

Q2
R ≡ QT (M + L)Q, P 2

R ≡ P T (M + L)P, QR · PR ≡ QT (M + L)P . (4.3)

Then at the point (τ,M) in the space of asymptotic moduli we choose C to be

ℑ(ρ̌) = Λ


 |τ |2

τ2
+

Q2
R√

Q2
RP

2
R − (QR · PR)2


 ,

ℑ(σ̌) = Λ


 1

τ2
+

P 2
R√

Q2
RP

2
R − (QR · PR)2


 ,

ℑ(v̌) = −Λ


τ1
τ2

+
QR · PR√

Q2
RP

2
R − (QR · PR)2


 , (4.4)

where Λ is a large positive number. Then on C

ℑ(c0d0ρ̌+ a0b0σ̌ + (a0d0 + b0c0)v̌)

=
c0d0

τ2
Λ

{(
τ2+

E

2c0d0

)2

+

(
τ1−

a0d0 + b0c0
2c0d0

)2

−
(
1+

E2

4c20d
2
0

)}
, (4.5)

where

E =
c0d0Q

2
R + a0b0P

2
R − (a0d0 + b0c0)QR · PR√

Q2
RP

2
R − (QR · PR)2

. (4.6)

As shown in [13], the right hand side of (4.5) vanishes on the wall of marginal stability

associated with the decay given in (4.1). Thus it follows from (4.5) that as we cross this

7Of course the translation symmetries (3.16) allow us to shift a pole at (4.2) to other equivalent locations.

Our postulate asserts that the contribution comes from poles which can be brought to (4.2) using the

translation symmetries (3.16). In that case we can choose the unit cell over which we carry out the

integration in (2.2) in such a way that only the pole at (4.2) contributes to the jump in the index across

the wall at (4.1). A possible exception to this will be discussed in the paragraphs above eq. (4.12) where

we address some subtle issues.
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wall of marginal stability, the contour (4.4) crosses the pole at (4.2) in accordance with

our postulate.

This postulate allows us to identify the possible poles of the partition function besides

those related to the v̌ = 0 pole by the S-duality transformation (3.5), — they occur at (4.2)

for those values of a0, b0, c0 and d0 for which the decay (4.1) is consistent with the charge

quantization laws. One can also get information about the residues at these poles since they

are given by the jumps in the index. This jump can be expressed using the wall crossing

formula [13, 23 – 28] that tells us that as we cross a wall of marginal stability associated

with the decay (Q,P ) → (Q1, P1) + (Q2, P2) the index jumps by an amount

(−1)Q1·P2−Q2·P1+1 (Q1 · P2 −Q2 · P1) dh(Q1, P1)dh(Q2, P2) (4.7)

up to a sign, where dh(Q,P ) denotes the index measuring the number of bosonic minus the

number of fermionic half BPS supermultiplets carrying charges (Q,P ). Thus this relates

the residues at the poles of the integrand to the indices of half BPS states.

We shall now study the consequence of (4.7) on the residue at the pole (4.2). First

let us consider the special case associated with the decay (Q,P ) → (Q, 0) + (0, P ). In this

case the jump in the index is given by

(−1)Q·P+1Q · P de(Q) dm(P ) , (4.8)

where de(Q) = dh(Q, 0) is the index of purely electrically charged states and dm(P ) =

dh(0, P ) is the index of purely magnetically charged state. This jump is to be accounted

for by the residue of a pole of the integrand at v̌ = 0. The result (4.8) is reproduced if near

v̌ = 0, Φ̌ behaves as

Φ̌(ρ̌, σ̌, v̌)−1 ∝ {φm(ρ̌)−1 φe(σ̌)−1v̌−2 + O(v̌0)} , (4.9)

where 1/φm(ρ̌) and 1/φe(σ̌) denote respectively the partition functions of purely magnetic

and purely electric states:

dm(P ) =
1

T1

∫ iM1+T1/2

iM1−T1/2
dρ̌ e−iπP 2ρ̌ 1

φm(ρ̌)
,

de(Q) =
1

T2

∫ iM2+T2/2

iM2−T2/2
dσ̌ e−iπQ2σ̌ 1

φe(σ̌)
. (4.10)

Substituting (4.10) into the integrand in (2.2) and picking up the residue from the pole at

v̌ = 0 we get the change in the index to be

(−1)Q·P+1Q · P de(Q) dm(P ) , (4.11)

in agreement with (4.8), provided we choose the constant of proportionality in (4.9) appro-

priately. Note that the Q · P factor comes from the v̌ derivative of the exponential factor

in (2.2) arising due to the double pole of Φ̌−1 at v̌ = 0.

In writing (4.9), (4.10) we have implicitly assumed that the allowed values of Q2 and

P 2 inside the set B are independent of each other, i.e. the possible values that Q2 can take
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for a given P 2 is independent of P 2 and vice versa. If this is not so then instead of having

a single product the right hand side of (4.9) will contain a sum of products. For example

if in the set B, Q2/2 and P 2/2 are correlated so that Q2/2 is odd (even) when P 2/2 is

odd (even) then the coeffcient of v̌−2 in the expression for Φ̌−1 will contain two terms, —

the product of the partition function with odd Q2/2 electric states with that of odd P 2/2

magnetic states and the product of the partition function of even Q2/2 electric states with

that of even P 2/2 magnetic states.

There is one more assumption that has gone into writing (4.9), (4.10). We have

assumed that given two pairs of charge vectors (Q,P ) and (Q̂, P̂ ) in B, if Q2 = Q̂2 then Q

and Q̂ are related by a T-duality transformation. Otherwise de(Q) will not be a function of

Q2 and one cannot define an electric partition function via eq. (4.10). A similar restriction

applies to the magnetic charges as well. Now since the set B has been chosen such that if

the triplets (Q2, P 2, Q ·P ) are identical for two charge vectors then they must be related by

T-duality transformation, if two different Q’s with same Q2 are not related by T-duality

then they must come from triplets with different values of P 2 and/or Q ·P . In other words

the different T-duality orbits for a given Q2 must be correlated with P 2 and/or Q ·P . If the

correlation is with P 2 then we follow the procedure described in the previous paragraph,

e.g. if one set of Q’s arise from even P 2/2 and another set of Q’s arise from odd P 2/2, we

define two separate electric partition function for these two different sets of Q’s and identify

the coefficient of v̌−2 in the partition function Φ̌−1 as a sum of terms. If on the other hand

the correlation is with Q ·P then the procedure is more complicated. We first project onto

different Q ·P sectors by adding to Φ̌−1 other terms obtained by appropriate shifts of v̌, so

that the subset of states which contribute to the new partition function now has a unique

Q for a given Q2 up to T-duality transformations. The singularities of this new partition

functions near v̌ = 0 will now be described by equation of the type (4.9), (4.10). For

example if one set of Q’s come from oddQ·P and the second set of Q’s come from even Q·P ,

then we can consider the quarter BPS partition functions 1
2{Φ̌−1(ρ̌, σ̌, v̌)±Φ̌−1(ρ̌, σ̌, v̌+ 1

2)}.
These pick up even Q · P and odd Q · P states respectively, and hence the contribution

to these partition functions will come from charge vectors (Q,P ) with the property that

for a given Q2, there will be a unique Q up to a T-duality transformation. Thus the

behaviour of these combinations will now be controlled by equations of the type given

in (4.9), (4.10). Conversely, for the original set B the jump in the index associated with

the decay (Q,P ) → (Q, 0) + (0, P ) is now controlled by the zeroes of Φ̌(ρ̌, σ̌, v̌) at v̌ = 0

and also at v̌ = 1/2. Similar considerations apply when the same P 2 in the set B comes

from more than one P ’s which are not related by T-duality.

Often both the subtleties mentioned above can be avoided by a judicious choice of the

set B. In fact in all the explicit examples we shall study in section 6, we shall be able to

avoid these subtleties.

We now return to the general case associated with the decay described in (4.1). Since

here

(Q1, P1) = (a0d0Q− a0b0P, c0d0Q− c0b0P ),

(Q2, P2) = (−b0c0Q+ a0b0P,−c0d0Q+ a0d0P ) , (4.12)
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we have

Q1 · P2 −Q2 · P1 = −Q2c0d0 − P 2a0b0 +Q · P (a0d0 + b0c0) . (4.13)

Let us now make a change of variables

ρ̌′ = d2
0ρ̌+ b20σ̌ + 2b0d0v̌, σ̌′ = c20ρ̌+ a2

0σ̌ + 2a0c0v̌,

v̌′ = c0d0ρ̌+ a0b0σ̌ + (a0d0 + b0c0)v̌ , (4.14)

and define

Q′ = d0Q− b0P, P ′ = −c0Q+ a0P . (4.15)

Under this change of variables

dρ̌ ∧ dσ̌ ∧ dv̌ = dρ̌′ ∧ dσ̌′ ∧ dv̌′ , (4.16)

Q1 · P2 −Q2 · P1 = Q′ · P ′ , (4.17)

(Q1, P1) = (a0Q
′, c0Q

′), (Q2, P2) = (b0P
′, d0P

′) , (4.18)

and
1

2
ρ̌P 2 +

1

2
σ̌Q2 + v̌Q · P =

1

2
ρ̌′P ′2 +

1

2
σ̌′Q′2 + v̌′Q′ · P ′ . (4.19)

Thus the jump in the index given in (4.7) can be expressed as

(−1)Q
′·P ′+1Q′ · P ′ dh(a0Q

′, c0Q
′)dh(b0P

′, d0P
′) . (4.20)

Furthermore in these variables the pole at (4.2) is at v̌′ = 0. Thus we can identify (4.20)

with the residue of the integrand from v̌′ = 0. Using (4.16), (4.19) the latter may be

expressed as

(−1)Q·P+1

∫
dρ̌′dσ̌′dv̌′eiπ(ρ̌′P ′2+σ̌′Q′2+2v̌′Q′·P ′) 1

Φ̌(ρ̌, σ̌, v̌)
, (4.21)

where the integration contour is around v̌′ = 0. We now note that this result can be

reproduced if we assume that near the pole (4.2) the partition function behaves as8

Φ̌(ρ̌, σ̌, v̌)−1 ∝ {φe(σ̌
′; a0, c0)

−1φm(ρ̌′; b0, d0)
−1v̌′−2 + O(v̌′0)} , (4.22)

where 1/φe,m(τ ; k, l) denote the partition functions of half BPS dyons in the set B such that

dh(a0Q
′, c0Q

′) =
1

T

∫ iM+T/2

iM−T/2
dτ e−iπQ′2τ 1

φe(τ ; a0, c0)
,

dh(b0P
′, d0P

′) =
1

T ′

∫ iM+T ′/2

iM−T ′/2
dτ e−iπP ′2τ 1

φm(τ ; b0, d0)
. (4.23)

The integration over τ run parallel to the real axis over unit period with the imaginary

part fixed at some large positive value M . Substituting (4.22) into (4.21) and picking up

the residue from the pole at v̌′ = 0 we get the change in the index to be

(−1)Q
′·P ′+1Q′ · P ′ dh(a0Q

′, c0Q
′)dh(b0P

′, d0P
′) , (4.24)

8This formula suffers from the same type of subtleties described below eq. (4.11) with (Q, P ) replaced

by (Q′, P ′) and (ρ̌, σ̌, v̌) replaced by (ρ̌′, σ̌′, v̌′).
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in agreement with (4.20).

To summarize, (4.2) gives us the locations of the zeroes of Φ̌, whereas eq. (4.9) and

more generally (4.22) give us information about the behaviour of Φ̌ near this zero. We

shall now show that these results suggest additional symmetries of Φ̌ of the type described

in (3.15). Typically in any theory the partition functions of half BPS states have modular

properties. Let us for definiteness consider the decay (Q,P ) → (Q, 0) + (0, P ). In this

case the functions φm(ρ̌) and φe(σ̌) transform as modular forms of a subgroup of SL(2,Z)

since they arise from quantization of a fundamental string or a dual magnetic string. These

relations take the form

φm((αρ̌+β)(γρ̌+δ)−1) = (γρ̌+δ)k+2φm(ρ̌), φe((pσ̌+q)(rσ̌+s)−1) = (rσ̌+s)k+2φe(σ̌) ,

(4.25)

where k is an integer specific to the theory under study, and

(
α β

γ δ

)
and

(
p q

r s

)
belong

to appropriate subgroups of SL(2,Z). Given that φm and φe have these symmetries, we

conclude from (4.9) that near v̌ = 0, Φ̌ also has some additional symmetries. Even though

there is no guarantee that these will be symmetries of the full quarter BPS partition

function, one could hope that some part of these do lift to symmetries of the partition

function and hence of Φ̌. Those which do can be represented by symplectic transformations

of the type (3.15) with

(
A B

C D

)
=




α 0 β 0

0 1 0 0

γ 0 δ 0

0 0 0 1


 and

(
A B

C D

)
=




1 0 0 0

0 p 0 q

0 0 1 0

0 r 0 s


 . (4.26)

The first transformation generates

ρ̌→ αρ̌+ β

γρ̌+ δ
, σ̌ → σ̌ − γv̌2

γρ̌+ δ
, v̌ → v̌

γρ̌+ δ
, (4.27)

while the second transformation generates

ρ̌→ ρ̌− rv̌2

rσ̌ + s
, σ̌ → pσ̌ + q

rσ̌ + s
, v̌ → v̌

rσ̌ + s
. (4.28)

Both transformations leave the v̌ = 0 surface invariant. Furthermore applying these trans-

formations on (3.15) and using (4.9) near v̌ = 0 we generate the transformation laws (4.25).

The symplectic transformations given in (4.26), if present, give us the additional sym-

metries required to have Φ̌ transform as a modular form under a non-trivial subgroup of

Sp(2,Z). We can use this to determine the subgroup of Sp(2,Z) under which we expect

Φ̌ to transform as a modular form and also the weight k of the modular form. However

since we do not know a priori which part of the symmetry groups of φe and φm will lift

to the symmetries of Φ̌, this is not a fool proof method. Nevertheless these can serve as

guidelines for making an educated guess.

The behaviour of Φ̌ near the other zeroes given in (4.2) could provide us with additional

information. If the zero of Φ̌ at (4.2) is related to the one at v̌ = 0 by an S-duality
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transformation then this information is not new. Since S-duality transformation acts by

multiplying the matrix

(
a0 b0
c0 d0

)
associated with a wall from the left [13], this means that if

(
a0 b0
c0 d0

)
itself is an S-duality transformation then we do not get a new information. To this

we must also add the information that multiplying

(
a0 b0
c0 d0

)
from the right by

(
λ 0

0 λ−1

)

for any λ or by

(
0 1

−1 0

)
does not change the wall [13]. However in many cases even

after imposing these equivalence relations one finds inequivalent walls.9 In such cases the

associated zero of Φ̌ cannot be related to the zero at v̌ = 0 by an S-duality transformation,

and we get new information.10 Let

(
a0 b0
c0 d0

)
be the matrix associated with such a decay. If

the corresponding partition functions φm(τ ; b0, d0) and φe(τ ; a0, c0) have modular groups

containing matrices of the form

(
α1 β1

γ1 δ1

)
and

(
p1 q1
r1 s1

)
respectively, then they may be

regarded as symplectic transformations generated by the matrices




d0 b0 0 0

c0 a0 0 0

0 0 a0 −c0
0 0 −b0 d0




−1


α1 0 β1 0

0 1 0 0

γ1 0 δ1 0

0 0 0 1







d0 b0 0 0

c0 a0 0 0

0 0 a0 −c0
0 0 −b0 d0


 (4.29)

and 


d0 b0 0 0

c0 a0 0 0

0 0 a0 −c0
0 0 −b0 d0




−1


1 0 0 0

0 p1 0 q1
0 0 1 0

0 r1 0 s1







d0 b0 0 0

c0 a0 0 0

0 0 a0 −c0
0 0 −b0 d0


 (4.30)

respectively, acting on the original variables (ρ̌, σ̌, v̌). Again we could hope that a part of

this symmetry is a symmetry of Φ̌.

We shall illustrate these by several examples in section 6.

5. Black hole entropy

Another set of constraints may be derived by requiring that the formula for the index of

quarter BPS states match the entropy of the black hole carrying the same charges in the

9For example in Z6 CHL model with S-duality group Γ1(6) the wall corresponding to the matrix

 
1 1

2 3

!

is not equivalent to the wall corresponding to

 
1 0

0 1

!
. We shall discuss this example in some detail in

section 8.
10Typically the number of such additional zeroes is a finite number, providing us with a finite set of

additional information.
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limit when the charges are large. The consequences of this constraint have been analyzed

in detail in the past [1, 2, 6, 9] and reviewed in [18]. Hence our discussion will be limited

to a review of the salient features.

In the approximation where we keep the supergravity part of the action containing

only the two derivative terms, the black hole entropy is given by

π
√
Q2P 2 − (Q · P )2 . (5.1)

In all known cases this result is reproduced by the asymptotic behaviour of (2.2) for large

charges. Furthermore the leading asymptotic behaviour comes from the residue of the

partition function at the pole at [1, 2, 6, 9, 18]

ρ̌σ̌ − v̌2 + v̌ = 0 , (5.2)

up to translations of ρ̌, σ̌ and v̌ by their periods. We shall assume that this result continues

to hold in the general case. Thus Φ̌(ρ̌, σ̌, v̌) must have a zero at (5.2). In order to find

the behaviour of Φ̌ near this zero one needs to know the first non-leading correction to the

leading formula (5.1) for the black hole entropy. A priori these corrections depend on the

complete set of four derivative terms in the quantum effective action of the theory and are

difficult to calculate. However in all known examples one finds that the entropy calculated

just by including the Gauss-Bonnet term in the effective action reproduces correctly the

first non-leading correction to the statistical entropy. If we assume that this result continues

to hold for a general theory then we can use this to determine the behaviour of Φ̌ near (5.2)

in terms of the coefficient of the Gauss-Bonnet term in the effective action.

Since this procedure has been extensively studied in [1, 2, 6, 9] and reviewed in [18], we

shall only quote the result. Typically the Gauss Bonnet term in the Lagrangian has the form

∫
d4x

√
− det g φ(a, S)

{
RµνρσR

µνρσ − 4RµνR
µν +R2

}
, (5.3)

where τ = a+ iS is the axion-dilaton modulus and the function φ(a, S) has the form

φ(a, S) = − 1

64π2
((k + 2) lnS + ln g(a+ iS) + ln g(−a+ iS)) + constant . (5.4)

Here k is the same integer that appeared in (3.15) and g(τ) transforms as a modular form

of weight k + 2 under the S-duality group. In a given theory g(τ) can be calculated in

string perturbation theory [38, 39]. To the first non-leading order in the inverse power of

charges, the effect of this term is to change the black hole entropy to [18]

SBH = π
√
Q2P 2 − (Q · P )2 + 64π2 φ

(
Q · P
P 2

,

√
Q2P 2 − (Q · P )2

P 2

)
+ · · · (5.5)

The analysis of [1, 2, 6, 9, 18] shows that this behaviour can be reproduced if we assume

that near the zero at (5.2)

Φ̌(ρ̌, σ̌, v̌) ∝ (2v − ρ− σ)k {v2 g(ρ) g(σ) + O(v4)} , (5.6)
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where

ρ =
ρ̌σ̌ − v̌2

σ̌
, σ =

ρ̌σ̌ − (v̌ − 1)2

σ̌
, v =

ρ̌σ̌ − v̌2 + v̌

σ̌
. (5.7)

If we assume that eq. (5.6) holds in general, then it gives us information about the

behaviour of Φ̌(ρ̌, σ̌, v̌) near the zero at (5.2). On the other hand if we can determine Φ̌

from other considerations then the validity of (5.6) would provide further evidence for the

postulate that in N = 4 supersymmetric string theories the Gauss-Bonnet term gives the

complete correction to black hole entropy to first non-leading order.

6. Examples

In this section we shall describe several applications of the general procedure described in

section 2. Some of them will involve known cases and will provide a test for our procedure,

while others will be new examples where we shall derive a set of constraints on certain

dyon partition functions which have not yet been computed from first principles.

6.1 Dyons with unit torsion in heterotic string theory on T 6

We consider a dyon of charge (Q,P ) in the heterotic string theory on T 6. Q and P take

values in the Narain lattice Λ [40, 41]. Let S1 and S̃1 be two circles of T 6, each labelled by

a coordinate with period 2π and let us denote by n′, ñ the momenta along S1 and S̃1, by

−w′,−w̃ the fundamental string winding numbers along S1 and S̃1, by N ′, Ñ the Kaluza-

Klein monopole charges associated with S1 and S̃1, and by −W ′,−W̃ the H-monopole

charges associated with S1 and S̃1 [18]. Then in the four dimensional subspace consisting

of charge vectors

Q =




ñ

n′

w̃

w′


 , P =




W̃

W ′

Ñ

N ′


 , (6.1)

the metric L takes the form

L =

(
0 I2
I2 0

)
, (6.2)

where I2 denotes 2 × 2 identity matrix. In this subspace we consider a three parameter

family of charge vectors (Q,P ) with

Q =




0

m

0

−1


 , P =




K

J

1

0


 , m,K, J ∈ Z . (6.3)

This has

Q2 = −2m, P 2 = 2K, Q · P = −J . (6.4)

We shall identify this set of charge vectors as the set A. As required, Q2, P 2 and Q · P
are independent linear functions of m, K and J so that for a pair of distinct values of
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(m,K, J) we get a pair of distinct values of (Q2, P 2, Q · P ). All the charge vectors in this

family have unit torsion, i.e. if we express the charges as linear combinations
∑
Qiei and∑

Piei of primitive basis elements ei of the lattice Λ, then the torsion

r(Q,P ) ≡ gcd{QiPj −QjPi} , (6.5)

is equal to 1. In this case it is known that Q2, P 2 and Q·P are the complete set of T-duality

invariants [42], i.e. beginning with a pair (Q,P ) with unit torsion we can reach any other

pair with unit torsion and same values of Q2, P 2 and Q ·P via a T-duality transformation.

Since the set A contains all integer triplets (Q2/2, P 2/2, Q · P ) we conclude that the set B
is the set of all (Q,P ) with unit torsion. The corresponding partition function is known [1]

— it is the inverse of the weight ten Igusa cusp form Φ10 of the full Sp(2,Z) group.

We shall now examine how Φ10 satisfies the various constraints derived in the previous

sections. First of all note that since S-duality transformation does not change the torsion

r, the full SL(2,Z) group is a symmetry of this set. Furthermore in this set Q2/2, P 2/2

and Q · P are all quantized in integer units. Thus the partition function is invariant

under translation of ρ̌, σ̌ and v̌ by arbitrary integer units. These correspond to symplectic

transformations of the form




d b 0 0

c a 0 0

0 0 a −c
0 0 −b d


 , and




1 0 a1 a3

0 1 a3 a2

0 0 1 0

0 0 0 1




(
a b

c d

)
∈ SL(2,Z), a1, a2, a3 ∈ Z . (6.6)

Clearly each of these transformations belong to Sp(2,Z) and is a symmetry of Φ10.

Next we turn to the constraints from the wall crossing formula. In this case all the walls

are related by S-duality transformation to the wall corresponding to the decay (Q,P ) →
(Q, 0) + (0, P ). So it is sufficient to study the consequences of the wall crossing formula

at this wall. Clearly Q2 and P 2 given in (6.4) are uncorrelated. Furthermore in heterotic

string theory on T 6 all Q’s with a given Q2 are related by T -duality transformation [43].

The same is true for P . Thus the subtleties mentioned below eq. (4.11) are absent, and the

behaviour of Φ̌(ρ̌, σ̌, v̌) near v̌ = 0 is expected to be given by (4.9). In this case both the

electric and the magnetic half-BPS partition functions are given by η(τ)−24 where η denotes

the Dedekind function. Thus we have, as a consequence of the wall crossing formula,

Φ̌(ρ̌, σ̌, v̌) ∝ {v̌2 (η(ρ̌))24 (η(σ̌))24 + O(v̌4)} . (6.7)

η(τ)24 transforms as a modular form of weight 12 under an SL(2,Z) transformation. From

eqs.(4.26) it follows that these SL(2,Z) transformations may be regarded as the following

– 22 –



J
H
E
P
0
5
(
2
0
0
8
)
1
0
1

symplectic transformations of ρ̌, σ̌, v̌




α 0 β 0

0 1 0 0

γ 0 δ 0

0 0 0 1


 and




1 0 0 0

0 p 0 q

0 0 1 0

0 r 0 s




(
α β

γ δ

)
∈ SL(2,Z),

(
p q

r s

)
∈ SL(2,Z) . (6.8)

Furthermore Φ̌ should have weight 12 − 2 = 10.

Let us now compare these with the known properties of Φ10. Φ10(ρ̌, σ̌, v̌) is indeed

known to have the factorization property (6.7). Furthermore since Φ10 transforms as a

modular form of weight 10 under the full Sp(2,Z) group, and since (6.1) are Sp(2,Z)

matrices, they represent symmetries of Φ10. Thus we see that in this case the full set of

symmetries of φm and φe lift to symmetries of Φ̌. It is worth noting that the matrices

given in (6.1) and (6.1) generate the full Sp(2,Z) group. Thus in this case by assuming

that the full modular groups of φe and φm lift to symmetries of the partition function we

could determine the symmetries of the partition function.

Finally let us consider the constraints coming from the knowledge of black hole entropy.

In this case the function g(τ) appearing in (5.4) is given by η(τ)24. Thus (5.6) takes the fom

Φ̌(ρ̌, σ̌, v̌) ∝ (2v − ρ− σ)10
{
v2 η(ρ)24 η(σ)24 + O

(
v4
)}

, (6.9)

where (ρ̌, σ̌, v̌) and (ρ, σ, v) are related via eq. (5.7). The Siegel modular form Φ10(ρ̌, σ̌, v̌)

satisfies these properties. In fact since (5.7) represents an Sp(2,Z) transformation, the

property (6.9) of Φ̌(ρ̌, σ̌, v̌) follows from the factorization property (6.7). This however

will not be the case in a more generic situation.

6.2 Dyons with unit torsion and even Q2/2 in heterotic on T 6

We now consider again heterotic string theory on T 6, but choose the set A to be collection

of (Q,P ) of the form:

Q =




0

2m

0

−1


 , P =




K

J

1

0


 , m,K, J ∈ Z . (6.10)

This has

Q2 = −4m, P 2 = 2K, Q · P = −J . (6.11)

We note that all the charge vectors have Q2/2 even. Since Q2 is T-duality invariant, any

other charge vector which can be obtained from this one by a T-duality transformation

has Q2/2 even. Thus the set B now consists of charge vectors which have even Q2/2 and

arbitrary integer values of P 2/2 and Q · P . Since this set B is a subset of charges for

which the spectrum was analyzed in section 6.1 we do not expect to derive any new results.

– 23 –



J
H
E
P
0
5
(
2
0
0
8
)
1
0
1

Nevertheless we have chosen this example as this will serve as a useful guide to our analysis

in later sections.

We first note that the quantization conditions of Q2, P 2 and Q ·P imply the following

periods of the partition function:

(ρ̌, σ̌, v̌) → (ρ̌+ a1, σ̌ + a2, v̌ + a3), a1 ∈ Z, a2 ∈ 1

2
Z, a3 ∈ Z . (6.12)

The period along σ̌ is not an integer. We can remedy this by defining

Qs = Q/2 , σ̌s = 4σ̌, v̌s = 2v̌ . (6.13)

so that Q2
s/2 and Qs · P are now quantized in half integer units. The periods (ã1, ã2, ã3)

of the variables (ρ̌, σ̌s, v̌s) conjugate to (P 2
s /2, Q

2
s/2, Qs · Ps) are now integers, given by,

ã1 ∈ Z, ã2 ∈ 2Z, ã3 ∈ 2Z . (6.14)

The dyon partition function in this case can be easily calculated from the one for section 6.1

by taking into account the evenness of Q2/2. This amounts to adding to the original

partition function another term where σ̌ is shifted by 1/2. Thus we have

1

Φ̌(ρ̌, σ̌, v̌)
=

1

2

(
1

Φ10(ρ̌, σ̌, v̌)
+

1

Φ10(ρ̌, σ̌ + 1
2 , v̌)

)
, (6.15)

or, in terms of the rescaled variables,

1

Φ̌(ρ̌, σ̌, v̌)
=

1

2

(
1

Φ10(ρ̌,
1
4 σ̌s,

1
2 v̌s)

+
1

Φ10(ρ̌,
1
4 σ̌s + 1

2 ,
1
2 v̌s)

)
. (6.16)

Let us determine the symmetries of this partition function. For this it will be useful to

work in terms of the original unscaled variables (ρ̌, σ̌, v̌) and at the end go back to the

rescaled variables. The first term on the right hand side of (6.15) has the usual Sp(2,Z)

symmetries acting on the variables (ρ̌, σ̌, v̌). However not all of these are symmetries of

the second term. Given an Sp(2,Z) matrix




a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4


, it is a symmetry of the second

term provided its action on (ρ̌, σ̌, v̌) can be regarded as an Sp(2,Z) action




a′1 b
′
1 c

′
1 d

′
1

a′2 b
′
2 c

′
2 d

′
2

a′3 b
′
3 c

′
3 d

′
3

a′4 b
′
4 c

′
4 d

′
4




on (ρ̌, σ̌ + 1
2 , v̌) followed by a translation on σ̌ by 1/2. Since a translation of σ̌ by 1/2

can be regarded as a symplectic transformation with the matrix




1 0 0 0

0 1 0 1/2

0 0 1 0

0 0 0 1


, the above
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condition takes the form:




1 0 0 0

0 1 0 1/2

0 0 1 0

0 0 0 1







a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4


 =




a′1 b
′
1 c

′
1 d

′
1

a′2 b
′
2 c

′
2 d

′
2

a′3 b
′
3 c

′
3 d

′
3

a′4 b
′
4 c

′
4 d

′
4







1 0 0 0

0 1 0 1/2

0 0 1 0

0 0 0 1


 . (6.17)

This gives




a′1 b
′
1 c

′
1 d

′
1

a′2 b
′
2 c

′
2 d

′
2

a′3 b
′
3 c

′
3 d

′
3

a′4 b
′
4 c

′
4 d

′
4


 =




a1 b1 c1 d1 − 1
2b1

a2 + 1
2a4 b2 + 1

2b4 c2 + 1
2c4 d2 + 1

2 (d4 − b2) − 1
4b4

a3 b3 c3 d3 − 1
2b3

a4 b4 c4 d4 − 1
2b4


 . (6.18)

The coefficients ai, bi, ci and di are integers. Requiring that there exist integer a′i, b
′
i, c

′
i

and d′i satisfying the above constraints we get further conditions on ai, bi, ci and di. These

take the following form:

a4, b4, c4, b1, b3 ∈ 2Z, b4 − 2(d4 − b2) ∈ 4Z . (6.19)

On the other hand the requirement that the original matrix




a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4


 is symplectic,

together with the first set of conditions given in (6.19), can be used to show that b2 and d4

are both odd. As a result (b2 − d4) is even, and hence b4 must be a multiple of 4 in order

to satisfy (6.19). Thus we have

a4 = 2â4, b4 = 4b̂4, c4 = 2ĉ4, b1 = 2b̂1, b3 = 2b̂3, â4, b̂4, ĉ4, b̂1, b̂3 ∈ Z . (6.20)

This determines the subgroup of Sp(2,Z) which leaves the individual terms in (6.15) in-

variant. To this we must add the additional element corresponding to σ̌ → σ̌ + 1
2 which

exchanges the two terms in (6.15). This corresponds to the symplectic transformation




1 0 0 0

0 1 0 1/2

0 0 1 0

0 0 0 1


 . (6.21)

The full symmetry group is then generated by the matrices:




a1 2b̂1 c1 d1

a2 b2 c2 d2

a3 2b̂3 c3 d3

2â4 4b̂4 2ĉ4 d4


 and




1 0 0 0

0 1 0 1/2

0 0 1 0

0 0 0 1


 . (6.22)
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We can easily determine how these transformations act on the rescaled variables (ρ̌, σ̌s, v̌s).

This is done with the help of conjugation by the symplectic matrix



1 0 0 0

0 2 0 0

0 0 1 0

0 0 0 1/2


 (6.23)

relating (ρ̌, σ̌, v̌) to (ρ̌, σ̌s, v̌s). This converts the generators given in (6.22) to




a1 b̂1 c1 2d1

2a2 b2 2c2 4d2

a3 b̂3 c3 2d3

â4 b̂4 ĉ4 d4


 and




1 0 0 0

0 1 0 2

0 0 1 0

0 0 0 1


 . (6.24)

We now note that all the matrices appearing in (6.24) have the form



∗ ∗ ∗ 0

0 ∗ 0 0

∗ ∗ ∗ 0

∗ ∗ ∗ ∗


 mod 2 , (6.25)

with ∗ denoting an arbitrary integer subject to the condition that (6.25) describes a sym-

plectic matrix. Furthetmore the set of matrices (6.25) are closed under matrix multipli-

cation. Thus the group generated by the matrices (6.24) is contained in the group Ǧ

consisting of Sp(2,Z) matrices of the form (6.25). It is in fact easy to show that the group

generated by the matrices (6.24) is the whole of Ǧ, i.e. any element of Ǧ given in (6.25)

can be written as a product of the elements given in (6.24).

We shall now set aside this result for a while and study the implications of S-duality

symmetry and the wall crossing formula on the partition function. The eventual goal is

to test the conclusions drawn from the general arguments along the lines of section 3 and

section 4 against the known results for Φ̌ given above. It follows from (3.2) and (6.11)

that in order that an S-duality transformation generated by

(
a b

c d

)
takes an arbitrary

element of the set B to another element of the set B we must have b even. Thus S-duality

transformations which preserve the set B take the form:

Q→ Q′′ = aQ+ bP, P → P ′′ = cQ+ dP, a, c, d ∈ Z, b ∈ 2Z, ad− bc = 1 . (6.26)

On the original variables (ρ̌, σ̌, v̌) the associated transformation can be represented by the

symplectic matrix (3.14). After conjugation by the matrix (6.23) we get the symplectic

matrix acting on the rescaled variables (ρ̌, σ̌s, v̌s):




d b̃ 0 0

c̃ a 0 0

0 0 a −c̃
0 0 −b̃ d


 , a, b̃ ≡ b/2, d ∈ Z, c̃ ≡ 2c ∈ 2Z . (6.27)
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This clearly has the form given in (6.25). Also the periodicities along the (ρ̌, σ̌s, v̌s) direc-

tions, as given in (6.14), are represented by the symplectic transformation



1 0 ã1 ã3

0 1 ã3 ã2

0 0 1 0

0 0 0 1


 , ã1 ∈ Z, ã2, ã3 ∈ 2Z . (6.28)

These also are of the form given in (6.25).

Next we turn to the information obtained from the wall crossing relations. Consider

first the wall associated with decay (Q,P ) → (Q, 0)+(0, P ), — this controls the behaviour

of Φ̌ near v̌ = 0 via eq. (4.9). Since Q2 = −4m and P 2 = 2K can vary independently

inside the set A, and since any two charge vectors of the same norm can be related by a

T-duality transformation [43], there is no subtlety of the type described below (4.11). The

inverse of the magnetic partition function φm entering (4.9) is the same as the one that

appeared in (6.7):

φm(ρ̌) = (η(ρ̌))24 . (6.29)

The electric partition function gets modified from the corresponding expression given

in (6.7) due to the fact that we are only including even Q2/2 states. As a result the

partition function now becomes 1
2

(
η(σ̌)−24 + η

(
σ̌ + 1

2

)−24
)
. Replacing σ̌ by σ̌s/4 we get

φe(σ̌)−1 =
1

2

(
η

(
σ̌s

4

))−24

+
1

2

(
η

(
σ̌s

4
+

1

2

))−24

. (6.30)

This leads to the following behaviour of Φ̌ near v̌s = 0:

Φ̌(ρ̌, σ̌, v̌) ∝


v̌2

s η(ρ̌)
24

{(
η

(
σ̌s

4

))−24

+

(
η

(
σ̌s

4
+

1

2

))−24
}−1

+ O(v̌4
s)


 (6.31)

Φ̌ given in (6.16) can be shown to satisfy this property.

φm(ρ̌) given in (6.29) transforms as a modular form of weight 12 under

ρ̌→ αρ̌+ β

γρ̌+ δ
,

(
α β

γ δ

)
∈ SL(2,Z) . (6.32)

On the other hand φe(σ̌) given in (6.30) can be shown to transform as a modular form of

weight 12 under

σ̌s →
pσ̌s + q

rσ̌s + s
,

(
p q

r s

)
∈ Γ0(2) , (6.33)

i.e. SL(2,Z) matrices with q even. (6.32) and (6.33) can be represented as symplectic

transformations of (ρ̌, σ̌s, v̌s) generated by the Sp(2,Z) matrices



α 0 β 0

0 1 0 0

γ 0 δ 0

0 0 0 1


 and




1 0 0 0

0 p 0 q

0 0 1 0

0 r 0 s


 , q ∈ 2Z, α, β, γ, δ, p, r, s ∈ Z . (6.34)
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We now note that these transformations fall in the class given in (6.25). Thus in this case

the modular symmetries of the half-BPS partition function associated with pole at v̌ = 0

are lifted to symmetries of the full partition function.

In this case there is one additional wall which is not related to the wall considered above

by the Γ0(2) S-duality transformation (6.26) acting on the original variables. This corre-

sponds to the decay (Q,P ) → (Q−P, 0)+(P,P ). Comparing this with (4.1) we see that here

(
a0 b0
c0 d0

)
=

(
1 1

0 1

)
. (6.35)

Following (4.14), (4.15) and the relationship (6.13) between the original variables and the

rescaled variables we have

ρ̌′ = ρ̌+
1

4
σ̌s + v̌s, σ̌′ =

1

4
σ̌s, v̌′ =

1

2
v̌s +

1

4
σ̌s , (6.36)

Q′ = Q− P, P ′ = P . (6.37)

Thus the pole of the partition function is at v̌s + 1
2 σ̌s = 0. Furthermore since from the

relations (6.11) we see that the allowed values of (Q−P )2/2 = J +K− 2m and P 2/2 = K

are uncorrelated and can take arbitrary integer values, it follows from (4.22) that at this

zero Φ̌ goes as

Φ̌(ρ̌, σ̌s, v̌s) ∝ (2v̌s+σ̌s)
2 φm

(
ρ̌+

1

4
σ̌s + v̌s; 1, 1

)
φe

(
1

4
σ̌s; 1, 0

)
+O

(
(2v̌s + σ̌s)

4
)
. (6.38)

φm(τ ; 1, 1) denotes the partition function of half-BPS states carrying charges (P,P ), with

τ being conjugate to the variable P ′2/2 = P 2/2. Thus we have φm(τ ; 1, 1) = (η(τ))24.

On the other hand (φe(τ ; 1, 0))
−1 is the partition function of half BPS states carrying

charges (Q′, 0) = (Q − P, 0) with τ being conjugate to Q′2/2 = (Q − P )2/2. Since

(Q − P )2/2 = (−2m + K + J) can take arbitrary integer values, the corresponding

partition function is also given by η(τ)−24. Thus we have near (σ̌s + 2v̌s) = 0

Φ̌(ρ̌, σ̌s, v̌s) ∝
{

(2v̌s + σ̌s)
2η

(
ρ̌+

1

4
σ̌s + v̌s

)24

η

(
σ̌s

4

)24

+ O((2v̌s + σ̌s)
4)

}
(6.39)

Φ̌ given in (6.16) can be shown to satisfy this property.

φm(τ ; 1, 1) transforms as a modular form of weight 12 under τ → (α1τ+β1)/(γ1τ+δ1)

with α1, β1, γ1, δ1 ∈ Z, α1δ1 − β1γ1 = 1. On the other hand φe(τ ; 1, 0) transforms as

a modular form of weight 12 under τ → (p1τ + q1)/(r1τ + s1) with p1, q1, r1, s1 ∈ Z,

p1s1 − q1r1 = 1. Using (4.29), (4.30) and (6.23) we see that the the action of these

transformations on the variables (ρ̌, σ̌s, v̌s) may be represented by the symplectic matrices




α1 (α1 − 1)/2 β1 0

0 1 0 0

γ1 γ1/2 δ1 0

γ1/2 γ1/4 (δ1 − 1)/2 1


 ,




1 (1 − p1)/2 q1 −2q1
0 p1 −2q1 4q1
0 0 1 0

0 r1/4 (1 − s1)/2 s1


 . (6.40)
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By comparing with the matrices given in (6.25) we see however that the transforma-

tions (6.40) generates symmetries of the full partition function only after we impose the

additional constraints

r1, γ1 ∈ 4Z . (6.41)

Thus here we encounter a case where only a subset of the symmetries of the partition

function near a pole is lifted to a full symmetry of the partition function. By examining

the details carefully one discovers that in this case the pole comes from the first term

in (6.16). Whereas this term displays the full symmetry given in (6.40), requiring that

the other term also transforms covariantly under this symmetry generates the additional

restrictions given in (6.41).

Finally we turn to the constraint from black hole entropy. As in section 6.1, in this

case we have g(τ) = η(τ)24 in (5.4). Thus (5.6) takes the form

Φ̌(ρ̌, σ̌, v̌) ∝ (2v − ρ− σ)10 {v2 η(ρ)24 η(σ)24 + O(v4)} , (6.42)

where (ρ̌, σ̌, v̌) and (ρ, σ, v) are related via (5.7). Φ̌(ρ̌, σ̌, v̌) given in (6.15) can be shown

to satisfy this property. In fact the relevent pole of Φ̌−1 comes from the first term on the

right hand side of (6.15). The location of the zeroes of Φ10 are given in (7.8), and it follows

from this that the second term does not have a pole at v = 0.

6.3 Dyons of torsion 2 in heterotic string theory on T 6

We consider again heterotic string theory on T 6 and take the set A to consist of charge

vectors of the form

Q =




1

2m+ 1

1

1


 , P =




2K + 1

2J + 1

1

−1


 , m,K, J ∈ Z . (6.43)

This has

Q2 = 4(m+ 1), P 2 = 4(K − J), Q · P = 2(K + J −m+ 1) . (6.44)

Furthermore gcd{QiPj −QjPi}=2. Thus we have a family of charge vectors with torsion

2. It was shown in [42, 20] that for r = 2 there are three T-duality orbits for given

(Q2, P 2, Q · P ) — in the first Q is twice a primitive lattice vector, in the second P is

twice a primitive lattice vector and in the third both Q and P are primitive but Q ± P

are twice primitive lattice vectors. The dyon charges given in (6.43) are clearly of the

third kind. In the notation of [20] the discrete T-duality invariants of these charges are

(r1 = 1, r2 = 1, r3 = 2, u1 = 1). Note that as we vary m, J and K, Q2/2 and P 2/2

take all possible even values and Q · P takes all possible values subject to the restriction

that Q ± P are twice primitive lattice vectors. The latter condition requires Q · P to be

even and Q · P − 1
2Q

2 − 1
2P

2 to be a multiple of four. It now follows from the result

of [42, 20] that the T-duality orbit B of the set A consists of all the pairs (Q,P ) with

(r1 = 1, r2 = 1, r3 = 2, u1 = 1) and even values of Q2/2, P 2/2.
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Since Q2/2, P 2/2 and Q · P are all even and Q2 + P 2 + 2Q · P is a multiple of 8, it is

natural to introduce new charge vectors and variables

Qs ≡ Q/2, Ps ≡ P/2, ρ̌s ≡ 4ρ̌, σ̌s ≡ 4σ̌, v̌s ≡ 4v̌ , (6.45)

so that we have

1

2
Q2

s =
1

2
(m+ 1),

1

2
P 2

s =
1

2
(K − J), Qs · Ps =

1

2
(K + J −m+ 1) , (6.46)

quantized in half integer units subject to the constraint that

1

2
Q2

s +
1

2
P 2

s +Qs · Ps = K + 1 , (6.47)

is an integer. Since (ρ̌s, σ̌s, v̌s) are conjugate to (P 2
s /2, Q

2
s/2, Qs · Ps), the partition func-

tion (2.1) will be periodic under

(ρ̌s, σ̌s, v̌s) → (ρ̌s + 2, σ̌s, v̌s), (ρ̌s, σ̌s + 2, v̌s), (ρ̌s, σ̌s, v̌s + 2), (ρ̌s + 1, σ̌s + 1, v̌s + 1) . (6.48)

The group generated by these transformations can be collectively represented by symplectic

matrices of the form



1 0 ã1 ã3

0 1 ã3 ã2

0 0 1 0

0 0 0 1


 , ã1, ã2, ã3 ∈ Z, ã1 + ã2, ã2 + ã3, ã1 + ã3 ∈ 2Z , (6.49)

acting on the variables (ρ̌s, σ̌s, v̌s). For future reference we note that the change of variables

from (ρ̌, σ̌, v̌) to (ρ̌s, σ̌s, v̌s) can be regarded as a symplectic transformation of the form




2 0 0 0

0 2 0 0

0 0 1/2 0

0 0 0 1/2


 . (6.50)

We now need to determine the subgroup of the S-duality group that leaves the set

B invariant. If we did not have the restriction that Q2/2 and P 2/2 are even, then this

subgroup would consist of SL(2,Z) matrices of the form

(
a b

c d

)
subject to the restriction

a + b ∈ 2Z + 1 and c + d ∈ 2Z + 1 [20], – these conditions guarantee that the new charge

vectors (Q′′, P ′′) are each primitive and hence have the same set of discrete T-duality

invariants (r1 = 1, r2 = 1, r3 = 2, u1 = 1). We shall now argue that the same subgroup

also leaves the set B invariant. For this we need to note that if we begin with a (Q,P ) for

which Q2/2, P 2/2 and Q ·P are all even then their S-duality transforms given in (3.2) will

automatically have the same properties. Thus requiring the transformed pair (Q′′, P ′′) to

have even Q′′2/2 and P ′′2/2, as is required for (Q′′, P ′′) to belong to the set B, does not put

any additional restriction on the S-duality transformations. Since both Q and P are scaled

by the same amount to get the rescaled charges Qs and Ps, the S-duality group action on
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(Qs, Ps) is identical to that on (Q,P ) and hence its action on (ρ̌s, σ̌s, v̌s) is identical to that

on (ρ̌, σ̌, v̌). Using (3.14) we see that the representations of these symmetries as symplectic

matrices are given by




d b 0 0

c a 0 0

0 0 a −c
0 0 −b d


 , a, b, c, d ∈ Z, ad− bc = 1, a+ c ∈ 2Z+1, b+ d ∈ 2Z+1 , (6.51)

acting on the variables (ρ̌, σ̌, v̌) and also on (ρ̌s, σ̌s, v̌s).

Next we turn to the constraints from the wall crossing formula. We begin with the wall

associated with the decay (Q,P ) → (Q, 0) + (0, P ), – this controls the behaviour of Φ̌ at

v̌ = 0. The analysis is straightforward. We note that both electric and magnetic partition

functions involve summing over all possible even Q2/2 and P 2/2 values. An analysis similar

to the one leading to (6.30) give

φe(σ̌)−1 =
1

2

{
η

(
σ̌s

4

)−24

+ η

(
σ̌s + 2

4

)−24
}
, (6.52)

and

φm(ρ̌)−1 =
1

2

{
η

(
ρ̌s

4

)−24

+ η

(
ρ̌s + 2

4

)−24
}
. (6.53)

Thus we have

Φ̌(ρ̌, σ̌, v̌)∼
[
v̌2
s

{
η

(
σ̌s

4

)
−24+η

(
σ̌s+2

4

)
−24

}
−1

{
η

(
ρ̌s

4

)
−24+η

(
ρ̌s+2

4

)
−24

}
−1+O

(
v̌4
s

)]
,

(6.54)

near v̌ = 0. One can easily verify that the functions φe(σ̌) and φm(ρ̌) transform as modular

forms of weight 12 under the transformation σ̌s → (pσ̌s + q)/(rσ̌s + s) and ρ̌s → (αρ̌s +

β)/(γρ̌s+δ) with

(
p q

r s

)
∈ Γ0(2) and

(
α β

γ δ

)
∈ Γ0(2). These can be regarded as symplectic

transformations of the form



α 0 β 0

0 1 0 0

γ 0 δ 0

0 0 0 1


 and




1 0 0 0

0 p 0 q

0 0 1 0

0 r 0 s


 ,

αδ − βγ = 1, ps− qr = 1, p, r, s, α, γ, δ ∈ Z, q, β ∈ 2Z , (6.55)

acting on (ρ̌s, σ̌s, v̌s).

Next we consider the wall associated with the decay (Q,P ) → ((Q−P )/2, (P −Q)/2)+

((Q+ P )/2, (Q + P )/2). From (4.1) we see that the associated matrix can be taken to be

(
a0 b0
c0 d0

)
=

(
1√
2

1√
2

− 1√
2

1√
2

)
. (6.56)
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According to (4.2) this controls the behaviour of Φ̌(ρ̌, σ̌, v̌) near its zero at

ρ̌− σ̌ = 0 . (6.57)

Following the procedure outlined in eqs.(4.14)-(4.22) we can find the coefficient of (ρ̌− σ̌)2

in the expression for Φ̌. One can see from (6.43) that in this case 1
2((Q + P )/2)2 and

1
2 ((Q − P )/2)2 can take all possible independent integer values (K + 1) and (m − J)

respectively. We find from (4.23) that the inverses of the relevant half-BPS partition

functions are:

φe (τ ; a0, c0) = η(2τ)24, φm (τ ; b0, d0) = η(2τ)24 . (6.58)

The factor of 2 in the argument of η is due to the fact that Q′2/2 = (d0Q − b0P )2/2 =

(Q − P )2/4 and P ′2/2 = (−c0Q + a0P )2/2 = (Q+ P )2/4 entering in (4.23) are twice the

usual integer normalized combinations 1
8(Q±P )2. This gives, from (4.14), (4.22) and (6.45)

Φ̌(ρ̌, σ̌, v̌)∼
{
(ρ̌s−σ̌s)

2η((ρ̌s+σ̌s−2v̌s)/4)
24η((ρ̌s+σ̌s+2v̌s)/4)

24+O((ρ̌s − σ̌s)
4)
}
, (6.59)

near ρ̌s ≃ σ̌s. Since η(2τ) transforms covariantly under τ → (ατ + 1
2β)/(2γτ + δ) with(

α β

γ δ

)
∈ SL(2,Z), both φe and φm have full SL(2,Z) symmetry. Using (4.29), (4.30)

and (6.50) to represent them as symplectic transformations on the variables (ρ̌s, σ̌s, v̌s) we

get the following two sets of symplectic matrices:

1
2




α1 + 1 α1 − 1 2β1 2β1

α1 − 1 α1 + 1 2β1 2β1

γ1/2 γ1/2 δ1 + 1 δ1 − 1

γ1/2 γ1/2 δ1 − 1 δ1 + 1


 , 1

2




p1 + 1 −p1 + 1 2q1 −2q1
−p1 + 1 p1 + 1 −2q1 2q1
r1/2 −r1/2 s1 + 1 −s1 + 1

−r1/2 r1/2 −s1 + 1 s1 + 1


 ,

α1, β1, γ1, δ1, p1, q1, r1, s1 ∈ Z, α1δ1 − β1γ1 = p1s1 − q1r1 = 1 . (6.60)

Next we turn to the wall corresponding to the decay (Q,P ) → (Q − P, 0) + (P,P ).

This corresponds to the choice
(
a0 b0
c0 d0

)
=

(
1 1

0 1

)
, (6.61)

and is associated with the zero of Φ̌ at

σ̌ + v̌ = 0 . (6.62)

Since (Q − P )2/8 = m − J and P 2/4 = K − J can take independent integer values, we

should be able to use (4.9), (4.10). The behaviour of Φ̌ near this zero is however somewhat

ambiguous since one of the decay products — the state carrying charge (Q − P, 0) —

is not a primitive dyon. As a result the index associated with this state is ambiguous.11

11For half-BPS states in N = 2 supersymmetric theories a modification of the wall crossing formula for

such non-primitive decays has been suggested in [28]. It is not clear a priori how to modify it for the

decays of quarter BPS dyons in N = 4 supersymmetric string theories. In section 7 we shall propose a

formula for the partition function of the states being studied in this section and examine it to find what

the modification should be.
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Nevertheless if we go ahead and assume the naive index that follows from tree level spectrum

of elementary string states, we get the following factorization behaviour of Φ̌:

Φ̌(ρ̌, σ̌, v̌)
?

∼

{
(σ̌s+v̌s)

2φe

(
σ̌s

4
; 1, 0

)
φm

(
ρ̌s+σ̌s+2v̌s

4
; 1, 1

)
+O((σ̌s+v̌s)

4)

}
for v̌≃−σ̌ ,

(6.63)

with

φe

(τ
4
; 1, 0

)
=

1

4

{
η(τ/4)−24 + η((τ + 1)/4)−24 + η((τ + 2)/4)−24 + η((τ + 3)/4)−24

}−1
,

φm

(τ
4
; 1, 1

)
=

1

2

{
η(τ/4)−24 + η(τ + 2)/4)−24

}−1
. (6.64)

φe(τ/4) has duality symmetries of the form τ → (p2τ+q2)/(r2τ+s2) with

(
p2 q2
r2 s2

)
∈ Γ0(2).

On the other hand φm(τ/4) has duality symmetries of the form τ → (α2τ +β2)/(γ2τ + δ2)

with

(
α2 β2

γ2 δ2

)
∈ Γ0(2). Using (4.29), (4.30) and (6.50) we find that the modular properties

in this factorized limit correspond to the following symplectic transformations acting on

(ρ̌s, σ̌s, v̌s)




α2 α2 − 1 β2 0

0 1 0 0

γ2 γ2 δ2 0

γ2 γ2 δ2 − 1 1


 and




1 1 − p2 q2 −q2
0 p2 −q2 q2
0 0 1 0

0 r2 1 − s2 s2


 ,

α2δ2 − β2γ2 = 1 = p2s2 − r2q2, α2, γ2, δ2, p2, q2, s2 ∈ Z, β2, r2 ∈ 2Z . (6.65)

We can now try to see if all the symplectic transformation matri-

ces (6.49), (6.51), (6.55), (6.60) and (6.65), representing possible symmetries of Φ̌,

fit into some subgroup of Sp(2,Z) defined by some congruence condition. As it stands

there does not seem to be a simple congruence subgroup of Sp(2,Z) that fits all the

matrices since some of these matrices do not even have integer entries. However if we

restrict γ and r in (6.55) to be even, i.e. assume that only a Γ(2) × Γ(2) subgroup of

the symmetry group Γ0(2) × Γ0(2) of the v̌ → 0 limit survives as a symmetry of the full

partition function, and restrict γ1 and r1 in (6.60) to be multiples of 4, i.e. assume that

only a Γ0(4) × Γ0(4) subgroup of the ρ̌s → σ̌s limit survives as a symmetry of the full

partition function, then there is a simple congruence subgroup of Sp(2,Z) into which all

the matrices fit:



1 + u u v v

u 1 + u v v

w w 1 + u u

w w u 1 + u


 mod 2, u, v, w = 0, 1 . (6.66)

We speculate that this could be the symmetry group of the dyon partition function under

consideration.
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Finally we turn to the constraint from black hole entropy. As in section 6.1, in this

case we have g(τ) = η(τ)24 in (5.4). Thus (5.6) takes the form

Φ̌(ρ̌, σ̌, v̌) ∝ (2v − ρ− σ)10
{
v2 η(ρ)24 η(σ)24 + O

(
v4
)}

, (6.67)

where (ρ, σ, v) and (ρ̌, σ̌, v̌) are related via (5.7).

Before concluding this section we would like to note that we can easily extend the

analysis of this section to the complementary subset of torsion 2 dyons with Q, P primitive

and Q2/2 and P 2/2 odd. For this we consider six dimensional electric and magnetic charge

vectors with metric

L =




0 1 0 0

1 0 0 0

0 0 0 I2
0 0 I2 0


 , (6.68)

and take the set A to be the collection of charge vectors (Q,P ) with

Q =




1

−1

1

2m+ 1

1

1




, P =




1

1

2K + 1

2J + 1

1

−1




, m,K, J ∈ Z . (6.69)

This has

Q2

2
= 2m+ 1,

P 2

2
= 2(K − J) + 1, Q · P = 2(K + J −m+ 1) . (6.70)

Thus we have Q2/2 and P 2/2 odd and Q ·P even. Furthermore we still have the constraint

that Q2 + P 2 + 2Q · P is a multiple of 8. Thus with (ρ̌s, σ̌s, v̌s) defined as in (6.45), the

partition function is antiperiodic under (ρ̌s, σ̌s, v̌s) → (ρ̌s + 2, v̌s, σ̌s), (ρ̌s, σ̌s + 2, v̌s) and

periodic under (ρ̌s, σ̌s, v̌s) → (ρ̌s, σ̌s, v̌s + 2), (ρ̌s + 1, σ̌s + 1, v̌s + 1). We can now repeat the

analysis of this section for this set of dyons. The results are more or less identical except

for some relative minus signs between the terms in the curly brackets in eqs.(6.52)-(6.54)

and the second equation in (6.64).

6.4 Dyons in Z2 CHL orbifold with twisted sector electric charge

We now consider a Z2 CHL orbifold defined as follows [29, 30]. We begin with E8 × E8

heterotic string theory on T 4×S1× S̃1 with S1 and S̃1 labelled by coordinates with period

4π and 2π respectively, and take a quotient of the theory by a Z2 symmetry that involves

2π shift along S1 together with an exchange of the two E8 factors. In the four dimensional

subspace of charges given in (6.1), now the momentum n′ along S1 is quantized in units of

1/2 whereas the Kaluza-Klein monopole charge N ′ along S1 is quantized in units of 2 [9].
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We shall take the set A to be consisting of charge vectors of the form

Q =




0

m/2

0

−1


 , P =




K

J

1

0


 , m,K, J ∈ Z . (6.71)

For this state we have

Q2 = −m, P 2 = 2K, Q · P = −J . (6.72)

As usual we denote by B the set of all (Q,P ) which are related to the ones given in (6.72)

by a T-duality transformation. Since Q2/2, P 2/2 and Q · P are quantized in units of 1/2,

1 and 1 respectively, Φ̌ satisfies the periodicity conditions (3.16) with

a1 ∈ Z, a2 ∈ 2Z, a3 ∈ Z . (6.73)

Comparison of (6.71) and (6.1) shows that the winding charge −w′ along S1 is 1 for this

state. Thus it represents a twisted sector state.

Our next task is to determine the subgroup of the S-duality group that leaves the set

B invariant. In this case the full S-duality group is Γ0(2), generated by matrices of the

form

(
a b

c d

)
with a, b, d ∈ Z, c ∈ 2Z, ad − bc = 1. It was shown in [18] that the set B is

closed under the full S-duality group. Thus the full S-duality group must be a symmetry

of the partition function.

We now turn to the constraints from the wall crossing formula. Consider first the

wall associated with the decay (Q,P ) → (Q, 0) + (0, P ), – this in fact is the only case we

need to analyze since all the walls are related to this one by S-duality transformation [13].

First of all note from (6.71), (6.72) that for a given Q2 = −m the charge vector Q ∈ A is

fixed uniquely. Thus the index of half-BPS states with charge (Q, 0) can be regarded as a

function of Q2. On the other hand for a given P 2 = 2K there is a family of P ∈ A labelled

by J , but these can be transformed to the vector corresponding to J = 0 by the T-duality

transformation matrix [18]




1 0 0 J

0 1 −J 0

0 0 1 0

0 0 0 1


. Thus the index of the charge vector (0, P ) can

also be expressed as a function of P 2. Finally we see from (6.72) that the allowed values of

Q2 and P 2 are uncorrelated. Thus we can use eqs.(4.9), (4.10) to extract the behaviour of

Φ̌ near v̌ = 0. The electric partition function can be calculated by examining the spectrum

of twisted sector states in the heterotic string theory [44 – 47]. On the other hand the

magnetic partition function can be calculated by examing the spectrum of D1-D5 system

in a dual type IIB description of the theory [18]. The results are

φe(σ̌) = η(σ̌)8η(σ̌/2)8 , φm(ρ̌) = η(ρ̌)8η(2ρ̌)8 . (6.74)

Eq. (4.9) then gives, near v̌ = 0,

Φ̌(ρ̌, σ̌, v̌) ∝
{
v̌2η(σ̌)8η(σ̌/2)8η(ρ̌)8η(2ρ̌)8 + O(v̌4)

}
. (6.75)
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φe(σ̌) and φm(ρ̌) transform as modular forms of weight 8 under

σ̌ → pσ̌ + q

rσ̌ + s
, p, r, s ∈ Z, q ∈ 2Z, ps− qr = 1 , (6.76)

and

ρ̌→ αρ̌+ β

γρ̌+ δ
, α, β, δ ∈ Z, γ ∈ 2Z, αδ − βγ = 1 . (6.77)

The corresponding groups are Γ0(2) and Γ0(2) respectively. Thus from (3.14), (3.17), (4.26)

we see that if (6.76) and (6.77) lift to symmetries of the full partition function then the par-

tition function transforms as a modular form of weight 6 under the Sp(2,Z) transformations

of the form



d b 0 0

c a 0 0

0 0 a −c
0 0 −b d


 ,




1 0 a1 a3

0 1 a3 a2

0 0 1 0

0 0 0 1


 ,




α 0 β 0

0 1 0 0

γ 0 δ 0

0 0 0 1


 and




1 0 0 0

0 p 0 q

0 0 1 0

0 r 0 s


 , (6.78)

with
(
a b

c d

)
∈ Γ0(2),

(
α β

γ δ

)
∈ Γ0(2),

(
p q

r s

)
∈ Γ0(2), a1, a3 ∈ Z, a2 ∈ 2Z . (6.79)

All the Sp(2,Z) matrices in (6.78) subject to the constraints (6.79) have the form




1 ∗ ∗ ∗
0 1 ∗ 0

0 0 1 0

0 ∗ ∗ 1


 mod 2 . (6.80)

Furthermore the set of matrices (6.80) are closed under matrix multiplication. Thus the

group generated by the set of Sp(2,Z) matrices (6.78) subject to the condition (6.79) is

contained in the group Ǧ of Sp(2,Z) matrices (6.80).

All the symmetries listed in (6.78) are indeed symmetries of the dyon partition function

of this model proposed in [6] and proved in [9]. Furthermore near v̌ = 0 the partition

function is known to have the factorization property given in (6.75), [13, 16, 17]. One

question that one can ask is: do the matrices given in (6.78) generate the full symmetry

group of the partition function (which is known in this case)? It turns out that the answer

is no. This group does not include the matrix



1 0 0 0

0 1 0 0

0 −1 1 0

−1 0 0 1


 , (6.81)

since this is not of the form given in (6.80). This generates the transformation

ρ̌→ ρ̌

(1 − v̌)2 − σ̌ρ̌
, σ̌ → σ̌

(1 − v̌)2 − σ̌ρ̌
, v̌ → ρ̌σ̌ + v̌(1 − v̌)

(1 − v̌)2 − σ̌ρ̌
, (6.82)
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and is known to be a symmetry of the partition function.12

Finally we turn to the constraints from black hole entropy. In this case the function

g(τ) is given by [39, 44]:

g(τ) = η(τ)8 η(2τ)8 . (6.83)

Thus (5.6) takes the fom

Φ̌(ρ̌, σ̌, v̌) ∝ (2v − ρ− σ)6
{
v2 η(ρ)8η(2ρ)8 η(σ)8η(2σ)8 + O

(
v4
)}

, (6.84)

where (ρ, σ, v) and (ρ̌, σ̌, v̌) are related via (5.7). The dyon partition function of the Z2

CHL model is known to satisfy this property. In fact historically this is the property that

was used to guess the form of the partition function [6].

This analysis can be easily generalized to the dyons of ZN CHL orbifolds carrying

twisted sector electric charges.

6.5 Dyons in Z2 CHL model with untwisted sector electric charge

We again consider the Z2 CHL model introduced in section 6.4, but now take the set A to

consist of dyons with charge vectors

Q =




0

(2m+ 1)/2

0

−2


 , P =




2K + 1

J

1

0


 , m,K, J ∈ Z . (6.85)

Since w′ = −2 for this state, it represents an untwisted sector state. For this state we have

Q2 = −2(2m+ 1), P 2 = 2(2K + 1), Q · P = −2J . (6.86)

Note that Q and P are both primitive. Since Q ·P is quantized in units of 2, we shall define

Qs =
Q√
2
, Ps =

P√
2
, ρ̌s = 2ρ̌, σ̌s = 2σ̌, v̌s = 2v̌ . (6.87)

Thus we have

Q2
s = − (2m+ 1) , P 2

s = 2K + 1, Qs · Ps = −J . (6.88)

Since Q2
s/2 is quantized in units of 1/2, we expect the partition function to have σ̌s period

2. However except for an overall additive factor of 1/2, Q2
s/2 is actually quantized in

integer units. Thus the partition function has the additional property that it is odd under

σ̌s → σ̌s + 1. Similarly since P 2
s is an odd integer, the partition function picks up a minus

sign under ρ̌s → ρ̌s + 1. We shall call these symmetries of Φ̌. Finally since Qs · Ps is

quantized in integer units, the period in the v̌s direction is also unity. The corresponding

symplectic transformations acting on (ρ̌s, σ̌s, v̌s) are of the form



1 0 ã1 ã3

0 1 ã3 ã2

0 0 1 0

0 0 0 1


 , ã1, ã2, ã3 ∈ Z . (6.89)

12This is the symmetry refered to as g3(1, 0) in [6] in a different representation.
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Under this transformation the partition function picks up a multiplier factor of (−1)ea1+ea2 .

Our next task is to determine the subgroup of the S-duality group Γ0(2) that leaves

the set B — defined as the T-duality orbit of A — invariant. For this let us apply the

S-duality transformation

(
a b

c d

)
∈ Γ0(2) on the charge vector (6.85). This gives

Q′ = aQ+ bP =




b(2K + 1)

(2m+ 1)a/2 + bJ

b

−2a


 , P ′ = cQ+ dP =




d(2K + 1)

(2m+ 1)c/2 + dJ

d

−2c


 .

(6.90)

We need to choose a, b, c, d such that (6.90) is inside the set B, i.e. it can be brought to the

form (6.85) after a T-duality transformation. The T-duality transformations acting within

this four dimensional subspace are generated by matrices of the form [18]:




n1 −m1

−l1 k1

k1 l1
m1 n1


 and




k2 −l2
k2 l2
m2 n2

−m2 n2


 ,

(
ki li
mi ni

)
∈ Γ0(2) . (6.91)

Now suppose b in (6.90) is even. Then we can apply a T-duality transformation on the

charge vector given in (6.90) with the matrix




1 l0
1 −l0
0 1

0 1







d −2c

−b/2 a

a b/2

2c d


 , l0 ≡ 1

2
bd(2K +1)− c

2
{(2m+1)a+2bJ} . (6.92)

It is straightfoward to verify that this brings (6.90) back to the set A consisting of pairs of

charge vectors of the form given in (6.85). This shows that a sufficient condition for (6.90)

to lie in the set B is to have b even, i.e.

(
a b

c d

)
∈ Γ(2). Using (3.2) we can also see that this

condition is necessary since acting on a pair (Q,P ) with Q2/2 odd, P 2/2 odd and Q · P
even, an S-duality transformation produces a (Q′, P ′) with odd Q′2/2 only if b is even.

Thus we identify the subgroup Γ(2) of the S-duality group Γ0(2) as the symmetry of the

set B. The overall scaling of Q and P does not change the symmetry group. Thus the quar-

ter BPS dyon partition function associated with the set B must be invariant under the Γ(2)

S-duality symmetry. This in turn corresponds to symplectic transformations of the form




d b 0 0

c a 0 0

0 0 a −c
0 0 −b d


 , ad− bc = 1, a, d ∈ Z, b, c ∈ 2Z , (6.93)

acting on (ρ̌, σ̌, v̌) and also on (ρ̌s, σ̌s, v̌s).
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Next we turn to the analysis of the constraints from wall crossing. First consider the

wall corresponding to the decay (Q,P ) → (Q, 0) + (0, P ), and examine whether there are

subtleties of kind mentioned below eq. (4.11) in applying eqs.(4.9), (4.10). For this we

note that here Q2 = −2(2m + 1) and P 2 = 2(2K + 1) are uncorrelated. For a given

Q2 = −2(2m + 1) there is a unique charge vector in the list given in (6.85). On the other

hand even though for a given P 2 = 2(2K + 1) there is an infinite family of P labelled by

J , they are all related by the T-duality transformation matrix




1 0 0 −J
0 1 J 0

0 0 1 0

0 0 0 1


 to the vector




2K + 1

0

1

0


. Thus there are no subtleties of the kind mentioned below (4.11) and we have

Φ̌(ρ̌, σ̌, v̌) ∝
{
v̌2 φm(ρ̌)φe(σ̌) + O(v̌4)

}
for v̌ ≃ 0 . (6.94)

The magnetic partition function is obtained from (6.74) by projection to odd values of

P 2/2 followed by ρ̌→ ρ̌s/2 replacement. This gives

φm(ρ̌)−1 =
1

2

{
η(ρ̌s/2)

−8η(ρ̌s)
−8 − η((ρ̌s + 1)/2)−8η(ρ̌s)

−8
}
. (6.95)

On the other hand the electric partition function can be calculated by analyzing the un-

twisted sector BPS spectrum of the fundamental heterotic string [44 – 47]. After taking

into account the fact that we are computing the partition function of odd Q2/2 states only,

and the σ̌ → σ̌s/2 replacement, the result is

φ−1
e (σ̌) =

1

2
(ψe(σ̌s) − ψe (σ̌s + 1)) ,

ψe(σ̌s) = 8η(σ̌s/2)
−24

[
1

2

(
ϑ2(σ̌s)

8+ϑ3(σ̌s)
8+ϑ4(σ̌s)

8
)
−ϑ3(σ̌s/2)

4ϑ4(σ̌s/2)
4

]
. (6.96)

In (6.96) ψe describes the partition function before projecting on to the oddQ2/2 sector [45].

φm(ρ̌s) given in (6.95) transforms as a modular form of weight 8 under ρ̌s → (αρ̌s +

β)/(γρ̌s + δ) with

(
α β

γ δ

)
∈ Γ0(2) with a multiplier (−1)β . On the other hand φe(σ̌)

given in (6.96) can be shown to transform as a modular form of weight 8 under σ̌s →

(pσ̌s + q)/(rσ̌s + s) for

(
p q

r s

)
∈ Γ0(2), with a multiplier (−1)q. These duality symmetries

correspond to the symplectic transformations



α 0 β 0

0 1 0 0

γ 0 δ 0

0 0 0 1


 and




1 0 0 0

0 p 0 q

0 0 1 0

0 r 0 s


 ,

αδ − βγ = 1, ps− qr = 1, α, β, δ, p, q, s ∈ Z, γ, r ∈ 2Z , (6.97)
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acting on (ρ̌s, σ̌s, v̌s).

Since for the set B the S-duality group is Γ(2), in this case there is another wall of

marginal stability, associated with

(
a0 b0
c0 d0

)
=

(
1 1

0 1

)
, which cannot be related to the

previous wall by an S-duality transformation. This corresponds to the decay (Q,P ) →
(Q−P, 0) + (P,P ) and controls the behaviour of Φ̌ near v̌+ σ̌ = 0. As usual we first need

to determine if there are any subtleties of the type mentioned below eq. (4.11). Eq. (6.85)

shows that for a given (Q − P )2 = 4(K + J − m) there is an infinite family of (Q −

P ) =




−(2K + 1)

(2m− 2J + 1)/2

−1

−2


 labelled by 2K. However all of these can be related by T-

duality transformation




1 0 0 K

0 1 −K 0

0 0 1 0

0 0 0 1


 to the vector




−1

(2m− 2J − 2K + 1)/2

−1

−2


 which is

determined completely in terms of (Q−P )2. We have already seen earlier that all choices of

P for a given P 2 are also related by T-duality transformations. Finally we note that in this

case (Q− P )2/2 and P 2/2 can take independent even and odd integer values respectively.

It then follows that there are no subtleties of the kind mentioned below (4.11). After

evaluating φe and φm by standard procedure we find that near v̌ + σ̌ = 0 Φ̌ behaves as

Φ̌(ρ̌, σ̌, v̌)∝
[
v̌′2s
{
η(ρ̌′s/2)

−8−η((ρ̌′s+1)/2)−8
}−1

η(ρ̌′s)
8{ψe(σ̌

′
s)+ψe(σ̌

′
s+1)}−1+O(v̌′4s )

]
,

(6.98)

where

v̌′s = v̌s + σ̌s, σ̌′s = σ̌s, ρ̌′s = ρ̌s + σ̌s + 2v̌s . (6.99)

This has duality symmetry ρ̌′s → (α1ρ̌
′
s + β1)/(γ1ρ̌

′
s + δ1) and σ̌′s → (p1σ̌

′
s + q1)/(r1σ̌

′
s + s1)

for

(
α1 β1

γ1 δ1

)
∈ Γ0(2) and

(
p1 q1
r1 s1

)
∈ Γ0(2) with a multiplier (−1)β1 . We can express them

as symplectic transformations acting on (ρ̌s, σ̌s, v̌s) using (4.29), (4.30). This gives




α1 α1 − 1 β1 0

0 1 0 0

γ1 γ1 δ1 0

γ1 γ1 δ1 − 1 1


 , and




1 1 − p1 q1 −q1
0 p1 −q1 q1
0 0 1 0

0 r1 1 − s1 s1


 ,

α1δ1 − β1γ1 = 1 = p1s1 − r1q1, α1, β1, δ1, p1, q1, s1 ∈ Z, γ1, r1 ∈ 2Z . (6.100)

As usual, we would like to know if there is a natural subgroup of Sp(2,Z) defined

by some congruence relation into which all the Sp(2,Z) matrices (6.89), (6.93), (6.5)

and (6.100) fit. There is indeed such a subgroup defined as the collection of matrices
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of the form 


1 0 ∗ ∗
0 1 ∗ ∗
0 0 1 0

0 0 0 1


 mod 2 . (6.101)

It is natural to speculate that (6.101) is the symmetry group of the partition function

under consideration.

Finally we turn to the constraint from black hole entropy. Since we are considering Z2

CHL orbifold, the function g(τ) appearing in the coefficient of the Gauss-Bonnet term in

the effective action is the same as the one in section 6.4:

g(τ) = η(τ)8 η(2τ)8 . (6.102)

Thus (5.6) takes the fom

Φ̌(ρ̌, σ̌, v̌) ∝ (2v − ρ− σ)6
{
v2 η(ρ)8η(2ρ)8 η(σ)8η(2σ)8 + O

(
v4
)}

, (6.103)

where (ρ, σ, v) and (ρ̌, σ̌, v̌) are related via (5.7).

7. A proposal for the partition function of dyons of torsion two

In this section we shall consider the set of dyons described in section 6.3, carrying charge

vectors (Q,P ) with torsion 2, Q, P primitive and Q2/2, P 2/2 even, and propose a form of

the partition function that satisfies all the constraints derived in section 6.3. The proposed

form of the partition function is

1

Φ̌(ρ̌, σ̌, v̌)
=

1

16

[
1

Φ10(ρ̌, σ̌, v̌)
+

1

Φ10(ρ̌, σ̌ + 1
2 , v̌)

+
1

Φ10(ρ̌+ 1
2 , σ̌, v̌)

+
1

Φ10(ρ̌+ 1
2 , σ̌ + 1

2 , v̌)
+

1

Φ10(ρ̌+ 1
4 , σ̌ + 1

4 , v̌ + 1
4 )

+
1

Φ10(ρ̌+ 1
4 , σ̌ + 3

4 , v̌ + 1
4 )

+
1

Φ10(ρ̌+ 3
4 , σ̌ + 1

4 , v̌ + 1
4)

+
1

Φ10(ρ̌+ 3
4 , σ̌ + 3

4 , v̌ + 1
4 )

+
1

Φ10(ρ̌+ 1
2 , σ̌ + 1

2 , v̌ + 1
2)

+
1

Φ10(ρ̌+ 1
2 , σ̌, v̌ + 1

2)
+

1

Φ10(ρ̌, σ̌ + 1
2 , v̌ + 1

2)
+

1

Φ10(ρ̌, σ̌, v̌ + 1
2)

+
1

Φ10(ρ̌+ 3
4 , σ̌ + 3

4 , v̌ + 3
4 )

+
1

Φ10(ρ̌+ 3
4 , σ̌ + 1

4 , v̌ + 3
4)

+
1

Φ10(ρ̌+ 1
4 , σ̌ + 3

4 , v̌ + 3
4 )

+
1

Φ10(ρ̌+ 1
4 , σ̌ + 1

4 , v̌ + 3
4)

]

+

[
1

Φ10(ρ̌+ σ̌ + 2v̌, ρ̌+ σ̌ − 2v̌, σ̌ − ρ̌)

+
1

Φ10(ρ̌+ σ̌ + 2v̌ + 1
2 , ρ̌+ σ̌ − 2v̌ + 1

2 , σ̌ − ρ̌+ 1
2 )

]
. (7.1)
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The index d(Q,P ) is computed from this partition function using the formula

d(Q,P ) =
1

4
(−1)Q·P+1

∫

C
dρ̌sdσ̌sdv̌s e

−i π

4
(σ̌sQ2+ρ̌sP 2+2v̌sQ·P ) 1

Φ̌(ρ̌, σ̌, v̌)
,

×(ρ̌s, σ̌s, v̌s) ≡ (4ρ̌, 4σ̌, 4v̌) , (7.2)

where the contour C is defined by fixing the imaginary parts of ρ̌s, σ̌s, v̌s to appropriate

values depending on the domain of the moduli space in which we want to compute the

index, and the real parts span the unit cell defined by the periodicity condition

(ρ̌s, σ̌s, v̌s) → (ρ̌s + 2, σ̌s, v̌s), (ρ̌s, σ̌s + 2, v̌s), (ρ̌s, σ̌s, v̌s + 2), (ρ̌s + 1, σ̌s + 1, v̌s + 1) . (7.3)

The overall multiplicative factor of 1/4 in (7.2) accounts for the fact that the unit cell

defined by eqs.(7.3) has volume 4. The factor of 1/4 in the exponent in (7.2) accounts for

the replacement of (ρ̌, σ̌, v̌) by (ρ̌s/4, σ̌s/4, v̌s/4) in (2.2). Note that the sixteen terms inside

the first square bracket in (7.1) together gives the partition function of dyons of unit torsion

subject to the constraint that Q2/2, P 2/2, Q ·P are even and Q2 +P 2−2Q ·P is a multiple

of 8. The second term is new and reflects the effect of considering states with torsion two.

We shall now check that this formula satisfies all the constraints derived in section 6.3.

We begin with the S-duality transformations. The first term inside the first square bracket

(Φ10(ρ̌, σ̌, v̌))
−1 is S-duality invariant since S-duality transformation can be regarded as an

Sp(2,Z) transformation on (ρ̌, σ̌, v̌). The other terms inside the first square bracket have

the form (Φ10(ρ̌ + b1, σ̌ + b2, v̌ + b3))
−1 for appropriate choices of (b1, b2, b3). Since these

shifts may be represented as symplectic transformations of (ρ̌, σ̌, v̌), S-duality transforma-

tion (6.51) will change this term to (Φ10(ρ̌+ b′′1 , σ̌ + b′′2 , v̌ + b′′3))
−1 with




1 0 b′′1 b
′′
3

0 1 b′′3 b
′′
2

0 0 1 0

0 0 0 1


 =




d b 0 0

c a 0 0

0 0 a −c
0 0 −b d




−1 


1 0 b1 b3
0 1 b3 b2
0 0 1 0

0 0 0 1







d b 0 0

c a 0 0

0 0 a −c
0 0 −b d


 ,

a, b, c, d ∈ Z, ad− bc = 1, a+ c ∈ 2Z + 1, b+ d ∈ 2Z + 1 . (7.4)

One finds that under such a transformation the sixteen triplets (b1, b2, b3) appearing in the

sixteen terms inside the first square bracket get permuted up to integer shifts which are

symmetries of Φ10. This proves the S-duality invariance of the first 16 terms.

To test the S-duality invariance of the second term we define

ρ̌′ = (ρ̌+ σ̌ + 2v̌), σ̌′ = (ρ̌+ σ̌ − 2v̌), v̌′ = (σ̌ − ρ̌) . (7.5)

It is easy to verify that the effect of S-duality transformation (6.51) on the (ρ̌′, σ̌′, v̌′)

variables is represented by the symplectic matrix



(a+ b+ c+ d)/2 (a+ b− c− d)/2 0 0

(a− b+ c− d)/2 (a− b− c+ d)/2 0 0

0 0 (a− b− c+ d)/2 −(a− b+ c− d)/2

0 0 −(a+ b− c− d)/2 (a+ b+ c+ d)/2


 . (7.6)
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Given the conditions (7) on a, b, c, d, this is an Sp(2,Z) transformation. Thus the first term

inside the second square bracket in (7.1), given by (Φ10(ρ̌
′, σ̌′, v̌′))−1, is manifestly S-duality

invariant. The second term involves a shift of (ρ̌′, σ̌′, v̌′) by (1/2, 1/2, 1/2). One can easily

check that this commutes with the symplectic transformation (7.6) up to integer shifts in

(ρ̌′, σ̌′, v̌′). Thus the second term is also S-duality invariant.

We now turn to the wall crossing formulæ. First consider the wall associated with the

decay (Q,P ) → (Q, 0) + (0, P ). The jump in the index across this wall is controlled by the

residue of the pole at v̌ = 0. In order to evaluate this residue it will be most convenient to

choose the unit cell over which the integration (7.2) is performed to be −1 ≤ ℜ(ρ̌s) < 1,

−1 ≤ ℜ(σ̌s) < 1 and −1
2 ≤ ℜ(v̌s) <

1
2 so that the image of the pole at v̌s = 0 under

(ρ̌s, σ̌s, v̌s) → (ρ̌s ± 1, σ̌s ± 1, v̌s ± 1) is outside the unit cell, — otherwise we would need to

include the contribution from this pole as well. Using (7.2) we see that the change in the

index across this wall is given by

∆d(Q,P ) =
1

4
(−1)Q·P+1

∫ iM1+1

iM1−1
dρ̌s

∫ iM2+1

iM2−1
dσ̌s

∮
dv̌s e

−i π

4
(σ̌sQ2+ρ̌sP 2+2v̌sQ·P ) 1

Φ̌(ρ̌, σ̌, v̌)
,

(7.7)

where
∮

denotes the contour around v̌s = 0 and M1, M2 are large positive numbers. Now

the poles in (7.1) can be found from the known locations of the zeroes in Φ10(x, y, z):

n2(xy−z2)+jz+n1y−m1x+m2 =0

m1, n1,m2, n2 ∈ Z, j ∈ 2Z+1, m1n1+m2n2+
j2

4
=

1

4
. (7.8)

Using this we find that the poles in (7.1) at v̌s = 0 can come from the first four terms

inside the first square bracket. There is no pole at v̌s = 0 from the terms in the second

square bracket. The residue at the pole can be calculated by using the fact that

Φ10(x, y, z) ≃ −4π2 z2 η(x)24η(y)24 + O
(
z4
)
, (7.9)

near z = 0. This gives

Φ̌(ρ̌, σ̌, v̌)=−4π2v̌2
s

{
η

(
σ̌s

4

)
−24+η

(
σ̌s+2

4

)
−24

}
−1

{
η

(
ρ̌s

4

)
−24+η

(
ρ̌s+2

4

)
−24

}
−1+O

(
v̌4
s

)
.

(7.10)

Substituting this into (7.7) and using the convention that the v̌s contour encloses the pole

clockwise, we get

∆d(Q,P ) =
1

16
(−1)Q·P+1Q·P

∫ iM1+1

iM1−1
dρ̌s

{
η(ρ̌s/4)

−24+η((ρ̌s+2)/4)−24
}
e−iπρ̌sP 2/4

×
∫ iM2+1

iM2−1
dσ̌s

{
η(σ̌s/4)

−24 + η((σ̌s + 2)/4)−24
}
e−iπσ̌s Q2/4 . (7.11)

We now want to compare this with the general wall crossing formula given in (4.7). Here

the relevant half-BPS partition functions are to be computed with Q2 and P 2 restricted to
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be even. This gives

dh(Q, 0) =

∫ iM+1/4

iM−1/4
dτ

{
η(τ)−24 + η

(
τ +

1

2

)−24
}
e−iπτQ2

=
1

4

∫ 4iM+1

4iM−1
dσ̌s

{
η(σ̌s/4)

−24 + η((σ̌s + 2)/4)−24
}
e−iπσ̌s Q2/4,

dh(0, P ) =

∫ iM+1/4

iM−1/4
dτ

{
η(τ)−24 + η

(
τ +

1

2

)−24
}
e−iπτP 2

=
1

4

∫ 4iM+1

4iM−1
dρ̌s

{
η(ρ̌s/4)

−24 + η((ρ̌s + 2)/4)−24
}
e−iπρ̌s P 2/4 , (7.12)

for some large positive number M . Using this we can rewrite (7.11) as

∆d(Q,P ) = (−1)Q·P+1Q · P dh(Q, 0) dh(0, P ) , (7.13)

in agreement with the wall crossing formula.

Next we consider the wall associated with the decay (Q,P ) → ((Q−P )/2, (P −Q)/2)+

((Q + P )/2, (Q + P )/2). The associated pole of the partition function is at ρ̌ = σ̌. With

the help of (7.9) we find that this pole arises from the first term inside the second square

bracket in (7.1), and near this pole

Φ̌(ρ̌, σ̌, v̌) = −π
2

4
(σ̌s−ρ̌s)

2 η((ρ̌s+σ̌s+2v̌s)/4) η((ρ̌s+σ̌s−2v̌s)/4)+O
(
(σ̌s − ρ̌s)

4
)
. (7.14)

In order to compute the change in the index as we cross this wall, we change variables to

ρ̌′s = (ρ̌s + σ̌s + 2v̌s)/2, σ̌′s = (ρ̌s + σ̌s − 2v̌s)/2, v̌′s = (σ̌s − ρ̌s)/2 . (7.15)

The periodicity properties (7.3) on (ρ̌s, σ̌s, v̌s) take the form

(
ρ̌′s, σ̌

′
s, v̌

′
s

)
→
(
ρ̌′s + 2, σ̌′s, v̌

′
s

)
,
(
ρ̌′s, σ̌

′
s + 2, v̌′s

)
,
(
ρ̌′s, σ̌

′
s, v̌

′
s + 2

)
,
(
ρ̌′s + 1, σ̌′s + 1, v̌′s + 1

)
.

(7.16)

We choose the unit cell in the (ℜ(ρ̌′s),ℜ(σ̌′s),ℜ(v̌′s)) to be −1 ≤ ℜ(ρ̌′s) < 1, −1 ≤ ℜ(σ̌′s) < 1

and −1
2 ≤ ℜ(v̌′s) <

1
2 . Since the jacobian of the transformation associated with (7.15) is

unity, the change in the index across the wall is given by an expression analogous to (7.7)

∆d(Q,P )=
1

4
(−1)Q·P+1

∫ iM ′

1
+1

iM ′

1
−1

dρ̌′s

∫ iM ′

2
+1

iM ′

2
−1

dσ̌′s

∮
dv̌′se

−i π

4
(σ̌′

sQ′2+ρ̌′sP ′2+2v̌′sQ′·P ′) 1

Φ̌(ρ̌, σ̌, v̌)
,

(7.17)

where

Q′ =
Q− P√

2
, P ′ =

Q+ P√
2

. (7.18)

Substituting (7.14) into (7.17) we get

∆d(Q,P ) =
1

4
(−1)Q·P+1Q′ · P ′

∫ iM ′

1
+1

iM ′

1
−1

dρ̌′s η(ρ̌
′
s/2)

−24 e−iπρ̌′s P ′2/4

×
∫ iM ′

2
+1

iM ′

2
−1

dσ̌′s η(σ̌
′
s/2)

−24 e−iπσ̌′

s Q′2/4 . (7.19)
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On the other hand now the indices of the half-BPS decay products carrying charges

(Q1, P1) = ((Q− P )/2, (P −Q)/2), (Q2, P2) = ((Q+ P )/2, (Q + P )/2) , (7.20)

are given by

dh(Q1, P1) =

∫ iM+1/2

iM−1/2
dτ(η(τ))−24e−iπτ((Q−P )/2)2

=
1

2

∫ 2iM+1

2iM−1
dσ̌′s η(σ̌

′
s/2)

−24 e−iπσ̌′

s Q′2/4 , (7.21)

and

dh(Q2, P2) =

∫ iM+1/2

iM−1/2
dτ(η(τ))−24e−iπτ((Q+P )/2)2

=
1

2

∫ 2iM+1

2iM−1
dρ̌′s η(ρ̌

′
s/2)

−24 e−iπρ̌′s P ′2/4 . (7.22)

Using these results and the identities

Q1 · P2 −Q2 · P1 = Q′ · P ′, (−1)Q1·P2−Q2·P1 = (−1)(Q−P )2/2−P 2+Q·P = (−1)Q·P , (7.23)

we can express (7.19) as

∆d(Q,P ) = (−1)Q1·P2−Q2·P1+1 (Q1 · P2 −Q2 · P1) dh(Q1, P1) dh(Q2, P2) , (7.24)

in agreement with the wall crossing formula.

Next consider the decay (Q,P ) → (Q − P, 0) + (P,P ). This is controlled by the pole

at σ̌ + v̌ = 0. To analyze this contribution we define

Q′ = Q− P, P ′ = P (7.25)

and

ρ̌′s = ρ̌s + σ̌s + 2v̌s, σ̌′s = σ̌s, v̌′s = v̌s + σ̌s , (7.26)

so that ρ̌sP
2 + σ̌sQ

2 + 2v̌sQ · P = ρ̌′sP
′2 + σ̌′sQ

′2 + 2v̌′sQ
′ · P ′. In terms of these variables

the periods are

(ρ̌′s, σ̌
′
s, v̌

′
s) → (ρ̌′s + 2, σ̌′s, v̌

′
s), (ρ̌′s, σ̌

′
s + 1, v̌′s), (ρ̌′s, σ̌

′
s, v̌

′
s + 2) . (7.27)

The behaviour of Φ̌ near v̌′s = 0 can be found by the usual procedure and result is

Φ̌(ρ̌, σ̌, v̌)−1 = − 1

4π2v̌′2s

{
η

(
ρ̌′s
4

)−24

+ η

(
ρ̌′s + 2

4

)−24
}

×
{
η

(
σ̌′s
4

)−24

+ η

(
σ̌′s + 1

4

)−24

+ η

(
σ̌′s + 2

4

)−24

+ η

(
σ̌′s + 3

4

)−24
}

− 1

π2v̌′2s

{
η

(
ρ̌′s
4

)−24

+ η

(
ρ̌′s + 2

4

)−24
}
η(σ̌′s)

−24 + O
(
v̌′0s
)
. (7.28)
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Note that the first set of terms represent correctly the factorization behaviour given

in (6.63), but the second set of terms are extra. Thus the wall crossing formula gets

modified for the decay into non-primitive states. Using (7.28) we can compute the jump

in the index across the wall

∆d(Q,P ) =
1

16
(−1)Q·P+1Q′ ·P ′

∫ iM ′

1
+1

iM ′

1
−1

dρ̌′s

{
η

(
ρ̌′s
4

)−24

+η

(
ρ̌′s + 2

4

)−24
}
e−iπρ̌′sP ′2/4

×
∫ iM ′

2
+1/2

iM ′

2
−1/2

dσ̌′s

{
η

(
σ̌′s
4

)−24

+ η

(
σ̌′s + 1

4

)−24

+η

(
σ̌′s + 2

4

)−24

+ η

(
σ̌′s + 3

4

)−24
}
e−iπσ̌′

sQ′2/4

+
1

4
(−1)Q·P+1Q′ ·P ′

∫ iM ′

1
+1

iM ′

1
−1

dρ̌′s

{
η

(
ρ̌′s
4

)−24

+ η

(
ρ̌′s + 2

4

)−24
}
e−iπρ̌′sP ′2/4

×
∫ iM ′

2
+1/2

iM ′

2
−1/2

dσ̌′s η(σ̌
′
s)

−24 e−iπσ̌′

sQ′2/4 . (7.29)

Defining

(Q1, P1) = (Q− P, 0), (Q2, P2) = (P,P ) , (7.30)

we can express (7.29) as

∆d(Q,P )=(−1)Q1·P2−Q2·P1+1(Q1 · P2−Q2 · P1)

{
dh(Q1, P1)+dh

(
1

2
Q1,

1

2
P1

)}
dh(Q2, P2) .

(7.31)

The second term is extra compared to (4.7); it represents the effect of non-primitivity of

the final state dyons.

Finally let us turn to the analysis of the black hole entropy. For this we need to identify

the zeroes of Φ̌ at ρ̌σ̌− v̌2 + v̌ = 0 and show that Φ̌ has the behaviour given in (6.67) near

this pole. This is easily done using (7.1) and the locations of the zeroes of Φ10 given

in (7.8). One finds that the only term that has a zero at the desired location is the first

term inside the first square bracket in (7.1). Furthermore this term is proportional to the

dyon partition function 1/Φ10(ρ̌, σ̌, v̌) of the unit torsion states discussed in section 6.1.

Thus this term clearly will have the desired factorization property given in (6.67).

Our proposal for the dyon partition function can be easily generalized to the torsion

2, primitive Q, P and odd Q2/2, P 2/2 dyons discussed at the end of section 6.3. This

requires changing the signs of appropriate terms in (7.1) so that the partition function is

odd under ρ̌→ ρ̌+ 1
2 and also under σ̌ → σ̌ + 1

2 . The result is

1

Φ̌(ρ̌, σ̌, v̌)
=

1

16

[
1

Φ10(ρ̌, σ̌, v̌)
− 1

Φ10(ρ̌, σ̌ + 1
2 , v̌)

− 1

Φ10(ρ̌+ 1
2 , σ̌, v̌)

+
1

Φ10(ρ̌+ 1
2 , σ̌ + 1

2 , v̌)
+

1

Φ10(ρ̌+ 1
4 , σ̌ + 1

4 , v̌ + 1
4 )

− 1

Φ10(ρ̌+ 1
4 , σ̌ + 3

4 , v̌ + 1
4 )

− 1

Φ10(ρ̌+ 3
4 , σ̌ + 1

4 , v̌ + 1
4)
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+
1

Φ10(ρ̌+ 3
4 , σ̌ + 3

4 , v̌ + 1
4 )

+
1

Φ10(ρ̌+ 1
2 , σ̌ + 1

2 , v̌ + 1
2)

− 1

Φ10(ρ̌+ 1
2 , σ̌, v̌ + 1

2)
− 1

Φ10(ρ̌, σ̌ + 1
2 , v̌ + 1

2)
+

1

Φ10(ρ̌, σ̌, v̌ + 1
2)

+
1

Φ10(ρ̌+ 3
4 , σ̌ + 3

4 , v̌ + 3
4 )

− 1

Φ10(ρ̌+ 3
4 , σ̌ + 1

4 , v̌ + 3
4)

− 1

Φ10(ρ̌+ 1
4 , σ̌ + 3

4 , v̌ + 3
4 )

+
1

Φ10(ρ̌+ 1
4 , σ̌ + 1

4 , v̌ + 3
4)

]

+

[
1

Φ10(ρ̌+ σ̌ + 2v̌, ρ̌+ σ̌ − 2v̌, σ̌ − ρ̌)

− 1

Φ10(ρ̌+ σ̌ + 2v̌ + 1
2 , ρ̌+ σ̌ − 2v̌ + 1

2 , σ̌ − ρ̌+ 1
2 )

]
. (7.32)

This together with (7.1) exhausts all the dyons of torsion two with Q, P primitive since

there are no dyons of this type with Q2/2 even, P 2/2 odd or vice versa. To see this we

note that since (Q ± P ) are 2× primitive vectors, (Q ± P )2/2 must be multiples of four.

Taking the sum and difference we find that (Q2 + P 2)/2 and Q · P must be even.

Since (7.1) and (7.32) contains information about all the torsion two dyons with prim-

itive (Q,P ), the full partition function for such dyons in obtained by taking the sum of

these two functions. This gives the result quoted in (1.23).

Given this result on torsion two dyons in string theory we can go to appropriate gauge

theory limit to extract information about torsion two dyons in gauge theories as in [48, 42].

For simplicity we shall consider SU(3) gauge theories. If we denote by α1 and α2 the two

simple roots of SU(3), then, since the metric L reduces to the negative of the Cartan metric

of the gauge group, we have

α2
1 = −2, α2

2 = −2, α1 · α2 = 1 . (7.33)

Let us now consider a dyon of charge vectors (Q,P ) with

Q = α1 − α2, P = α1 + α2 . (7.34)

This has torsion 2. Furthermore both Q and P are primitive. Thus this falls in the class

of dyons analyzed in this section. In fact, since

Q2

2
= −3,

P 2

2
= −1, Q · P = 0 , (7.35)

the index of these quarter BPS dyons in gauge theory must be contained in (7.32). We shall

first show that the 16 terms inside the first square bracket in (7.32) do not contribute to the

index of the dyons described in (7.34) in any domain in the moduli space. For this we note

that the index computed from these terms is identical to the index of dyons of torsion 1

with appropriate constraints on Q2, P 2 and Q ·P . In absence of these constraints the index

is known to reproduce the index of unit torsion gauge theory dyons correctly [48], – these

are dyons of charge (α1, α2) or ones related to it by SL(2,Z) S-duality transformation:

(Q,P ) = (aα1 + bα2, cα1 + dα2), a, b, c, d ∈ Z, ad− bc = 1 . (7.36)
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Such dyons will always have Q2P 2 − (Q · P )2 = 3, and hence can never give a state of the

form given in (7.34) which has Q2P 2− (Q ·P )2 = 12. This in turn shows that the 16 terms

inside the first square bracket in (7.32) can never give a non-vanishing contribution to the

index of a gauge theory state with charge vector given in (7.34).

Thus the only possible contribution to the index of the dyons with charges (α1 −
α2, α1 + α2) can come from the two terms inside the second square bracket in (7.32). In

fact when Q2/2 and P 2/2 are odd then both terms give equal contribution; so we can just

calculate the contribution from the first term and multiply it by a factor of 2. Equivalently

we could use (1.23) where only the first term is present with a factor of 2. Defining

ρ̌′ = ρ̌+ σ̌ + 2v̌, σ̌′ = ρ̌+ σ̌ − 2v̌, v̌′ = σ̌ − ρ̌ , (7.37)

we can identify the relevant term in 1/Φ̌(ρ̌, σ̌, v̌) as 2/Φ10(ρ̌
′, σ̌′, v̌′). As usual the contri-

bution of this term to the index depends on the choice of the integration contour, which in

turn is determined by domain in the moduli space in which we want to compute the index.

Equivalently we can say that in different domains we need to use different Fourier series

expansion of 1/Φ̌. Now the index of a charge vector of the type given in (7.35) will come

from a term in the expansion of 1/Φ̌ of the form

e−2iπ(ρ̌+3σ̌) . (7.38)

Using (7.37) this takes the form

e−2iπ(ρ̌′+σ̌′+v̌′) . (7.39)

Thus in whichever domain the Fourier expansion of 1/Φ̌ contains a term of the form (7.39)

we have a non-vanishing index for the dyon in (7.35) with the index being equal to

(−1)Q·P+1 times the coefficient of this term. Since here Q · P = 0, the index is −2 times

the coefficient of (7.39) in the Fourier expansion of 1/Φ10(ρ̌
′, σ̌′, v̌′). Now from the analysis

of partition function of torsion one dyons (see e.g., [48]) we know that this expansion

indeed has a term of the form (7.39) for one class of choices of contour; these are the

contours for which

ℑ(ρ̌′),ℑ(σ̌′) ≫ −ℑ(v̌′) ≫ 0 . (7.40)

Using (4.4), or equivalently by an SL(2,R) transformation of the results of [48], one can

figure out the domain in the moduli space in which this choice of contour is the correct one.

It turns out to be the domain bounded by the walls associated with the decays of (Q,P ) into

((Q−P )/2, (P−Q)/2)+((Q+P )/2, (Q+P )/2), (−P,P )+(P+Q, 0), (Q−P, 0)+(P,P ) .

(7.41)

In this domain 1/Φ10 has to be first expanded in powers of e2πiρ̌′ and e2πiσ̌′

and then each

coefficient needs to be expanded in powers of e−2πiv̌′ . (7.39) is the leading term in this

expansion and its coefficient is 1. As a result the index of the dyons is −2. This agrees

with the results of [31 – 34] where it was shown that in an appropriate domain in the

moduli space dyons of torsion r has index (−1)r−1r, since these dyonic states are obtained

by tensoring the basic supermultiplet with a state of spin (r − 1)/2.
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Using a string junction picture [49, 50] ref. [31] also showed that the dyon considered

above exists in a domain of the moduli space bounded by three walls of marginal stability,

— one asscociated with the decay into (α1, α1)+ (−α2, α2), the second associated with the

decay into (2α1, 0) + (−α1 −α2, α1 + α2) and the third one associated with the decay into

(−2α2, 0)+(α1+α2, α1+α2). These are precisely the walls listed in (7.41). Since the gauge

theory dyons cease to exist outside these walls, the index computed in gauge theory jumps

by 2 across these three walls of marginal stability. Does this agree with the prediction

of the proposed dyon partition function in string theory? We can calculate the change

in the index associated with these decays using the standard formula (4.7) for decay into

primitive dyons [35] and the modified formula (7.31) for decay into non-primitive dyons

since the proposed partition function satisfies these relations. We find a jump in the index

equal to 2 across each of these walls as predicted by the gauge theory results.

8. Reverse applications

In our analysis so far we have used the information on half BPS partition function to extract

information about quarter BPS partition function. However we can turn this around. If

the quarter BPS partition function is known then we can use it to extract information

about the half-BPS partition function by first identifying an appropriate wall on which

one of the decay products is the half BPS state under consideration and then studying the

behaviour of the quarter BPS partition function near the pole that controls the jump in

the index at this particular wall.

As an example we can consider the Z2 CHL model of section 6.4. The decay (Q,P ) →
(Q, 0) + (0, P ) is controlled by the behaviour of Φ̌ near v̌ = 0. Thus if we did not know

the spectrum of magnetically charged half BPS states in this theory, we could study the

behaviour of Φ̌ near v̌ = 0 to get this information. In this case since all the other walls are

related to this one by S-duality transformation, this is the only independent information

we can get. However for more complicated models there can be more information.

To illustrate this we shall consider the example of the Z6 CHL model [51, 52] mentioned

in footnote 9. Our set A consists of charge vectors of the form

Q =




0

m/6

0

−1


 , P =




K

J

1

0


 , m,K, J ∈ Z , (8.1)

as in (6.71). We now consider the decay associated with the matrix

(
a0 b0
c0 d0

)
=

(
1 1

2 3

)
. (8.2)

From (4.1) we see that this corresponds to the decay

(Q,P ) → (M0, 2M0) + (N0, 3N0) , M0 ≡ 3Q− P, N0 ≡ −2Q+ P . (8.3)
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The charge vectors M0 and N0 are not related to Q or P by a T-duality transformation

since they correspond to charges that are triple and double twisted respectively. Further-

more the dyon charges (M0, 2M0) and (N0, 3N0) cannot be related by S-duality group

Γ1(6) to either a purely electric or a purely magnetic state whose index is known. On

the other hand the partition function of quarter BPS states of the type given in (8.3) is

known [11, 18]. Thus the latter can be used to extract information about the partition

function of these half BPS states.

From (4.2) it follows that the relevant zero of Φ̌ we need to examine is at

6ρ̌+ σ̌ + 5v̌ = 0 . (8.4)

The zeroes of Φ̌ have been classified in [9, 18]. For a generic ZN model Φ̌ has double zeroes at

n2(σ̌ρ̌− v̌2) + jv̌ + n1σ̌ − ρ̌m1 +m2 = 0

m1 ∈ NZ, n1,m2, n2 ∈ Z, j ∈ 2Z + 1, m1n1 +m2n2 +
j2

4
=

1

4
. (8.5)

For the N = 6 model, taking

m1 = −6, n1 = 1, m2 = n2 = 0, j = 5 , (8.6)

we see that Φ̌ indeed has a zero at (8.4). Thus by examining the known expression for Φ̌

near this zero we can determine the half-BPS partition functions of interest. This can be

done in a straightforward manner following the general procedure described in [9, 18].

We note in passing that in an arbitrary ZN model with the set A chosen as

Q =




0

m/N

0

−1


 , P =




K

J

1

0


 , m,K, J ∈ Z , (8.7)

the walls of marginal stability are controlled by matrices

(
a0 b0
c0 d0

)
subject to the

conditions [13]

a0d0 − b0c0 = 1, a0, b0, c0, d0 ∈ Z, c0d0 ∈ NZ . (8.8)

According to our hypothesis this decay will be controlled by a double zero of Φ̌ at

ρ̌c0d0 + σ̌a0b0 + v̌(a0d0 + b0c0) = 0 . (8.9)

This corresponds to the choice

m1 = −c0d0, n1 = a0b0, m2 = n2 = 0, j = a0d0 + b0c0 , (8.10)

in eq. (8). We now see that the mi’s, ni’s and j given in (8.10) satisfies all the constraints

mentioned in (8) as a consequence of (8.8). Thus our proposal that the decay associated

with the matrix

(
a0 b0
c0 d0

)
is always controlled by the zero at (8.9) is at least consistent

with the locations of the zeroes of Φ̌ for ZN orbifold models.
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